Defending Against Sophisticated Poisoning Attacks with RL-based Aggregation in Federated Learning
- URL: http://arxiv.org/abs/2406.14217v1
- Date: Thu, 20 Jun 2024 11:33:14 GMT
- Title: Defending Against Sophisticated Poisoning Attacks with RL-based Aggregation in Federated Learning
- Authors: Yujing Wang, Hainan Zhang, Sijia Wen, Wangjie Qiu, Binghui Guo,
- Abstract summary: Federated learning is highly susceptible to model poisoning attacks.
In this paper, we propose AdaAggRL, an RL-based Adaptive aggregation method.
Experiments on four real-world datasets demonstrate that the proposed defense model significantly outperforms widely adopted defense models for sophisticated attacks.
- Score: 12.352511156767338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is highly susceptible to model poisoning attacks, especially those meticulously crafted for servers. Traditional defense methods mainly focus on updating assessments or robust aggregation against manually crafted myopic attacks. When facing advanced attacks, their defense stability is notably insufficient. Therefore, it is imperative to develop adaptive defenses against such advanced poisoning attacks. We find that benign clients exhibit significantly higher data distribution stability than malicious clients in federated learning in both CV and NLP tasks. Therefore, the malicious clients can be recognized by observing the stability of their data distribution. In this paper, we propose AdaAggRL, an RL-based Adaptive Aggregation method, to defend against sophisticated poisoning attacks. Specifically, we first utilize distribution learning to simulate the clients' data distributions. Then, we use the maximum mean discrepancy (MMD) to calculate the pairwise similarity of the current local model data distribution, its historical data distribution, and global model data distribution. Finally, we use policy learning to adaptively determine the aggregation weights based on the above similarities. Experiments on four real-world datasets demonstrate that the proposed defense model significantly outperforms widely adopted defense models for sophisticated attacks.
Related papers
- Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning (FL) is a distributed machine learning diagram that enables multiple clients to collaboratively train a global model without sharing their private local data.
FL systems are vulnerable to attacks that are happening in malicious clients through data poisoning and model poisoning.
Existing defense methods typically focus on mitigating specific types of poisoning and are often ineffective against unseen types of attack.
arXiv Detail & Related papers (2024-08-05T20:27:45Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
Federated Learning (FL) is a collaborative learning paradigm enabling participants to collectively train a shared machine learning model.
Current FL defense strategies against data poisoning attacks either involve a trade-off between accuracy and robustness.
We present FedZZ, which harnesses a zone-based deviating update (ZBDU) mechanism to effectively counter data poisoning attacks in FL.
arXiv Detail & Related papers (2024-04-05T14:37:49Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuard is a novel Byzantine-robust aggregation rule aimed at defending against client-side training data distribution inference attacks.
The results of our experiments indicate that our defense mechanism is highly effective in protecting against client-side training data distribution inference attacks.
arXiv Detail & Related papers (2024-03-05T17:41:35Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
Federated learning systems are susceptible to poisoning attacks when malicious clients send false updates to the central server.
This paper proposes a new defense strategy, FedCPA (Federated learning with Critical Analysis)
Our attack-tolerant aggregation method is based on the observation that benign local models have similar sets of top-k and bottom-k critical parameters, whereas poisoned local models do not.
arXiv Detail & Related papers (2023-08-18T05:37:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Defending against the Label-flipping Attack in Federated Learning [5.769445676575767]
Federated learning (FL) provides autonomy and privacy by design to participating peers.
The label-flipping (LF) attack is a targeted poisoning attack where the attackers poison their training data by flipping the labels of some examples.
We propose a novel defense that first dynamically extracts those gradients from the peers' local updates.
arXiv Detail & Related papers (2022-07-05T12:02:54Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
Federated learning (FL) enables learning a global machine learning model from local data distributed among a set of participating workers.
FL is vulnerable to targeted poisoning attacks that negatively impact the integrity of the learned model.
We propose textitFL-Defender as a method to combat FL targeted attacks.
arXiv Detail & Related papers (2022-07-02T16:04:46Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.