論文の概要: On countering adversarial perturbations in graphs using error correcting codes
- arxiv url: http://arxiv.org/abs/2406.14245v1
- Date: Thu, 20 Jun 2024 12:14:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:52:01.149052
- Title: On countering adversarial perturbations in graphs using error correcting codes
- Title(参考訳): 誤り訂正符号を用いたグラフの対向摂動対策について
- Authors: Saif Eddin Jabari,
- Abstract要約: 逆の摂動は、送信機と受信機の間のグラフの送信中に起こる。
本稿では,送信側が指定したバイナリノイズと受信側で多数投票を行い,グラフの構造を修正した繰り返し符号化方式について検討する。
本研究では,非ランダムなエッジ除去の対象となるグラフを正確にデコードできることを示す。
- 参考スコア(独自算出の注目度): 7.553245365626645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of a graph subjected to adversarial perturbations, such as those arising from cyber-attacks, where edges are covertly added or removed. The adversarial perturbations occur during the transmission of the graph between a sender and a receiver. To counteract potential perturbations, we explore a repetition coding scheme with sender-assigned binary noise and majority voting on the receiver's end to rectify the graph's structure. Our approach operates without prior knowledge of the attack's characteristics. We provide an analytical derivation of a bound on the number of repetitions needed to satisfy probabilistic constraints on the quality of the reconstructed graph. We show that the method can accurately decode graphs that were subjected to non-random edge removal, namely, those connected to vertices with the highest eigenvector centrality, in addition to random addition and removal of edges by the attacker.
- Abstract(参考訳): サイバー攻撃によって生じたような敵の摂動を受けるグラフの問題は、エッジを隠蔽的に付加したり、取り除いたりすることを考える。
逆の摂動は、送信者と受信者の間のグラフの伝送中に発生する。
潜在的な摂動に対処するため,送信側が指定したバイナリノイズと受信側の多数決による繰り返し符号化方式を探索し,グラフの構造を修正した。
我々のアプローチは、攻撃の特徴を事前に知ることなく機能する。
再構成されたグラフの品質に関する確率的制約を満たすのに必要な繰り返し数に対する境界の解析的導出を提供する。
本手法は,非ランダムなエッジ除去の対象となるグラフ,すなわち固有ベクトル中心度の高い頂点に接続されたグラフを,攻撃者によるエッジのランダムな付加と除去に加えて正確に復号することができることを示す。
関連論文リスト
- Graph Anomaly Detection with Noisy Labels by Reinforcement Learning [13.135788402192215]
本稿では,新しいフレームワークREGAD,すなわちReinforced Graph Anomaly Detectorを提案する。
具体的には,高信頼ラベルを用いたノード間を近似したノイズエッジを切断することにより,ベース検出器の性能向上(AUC)を最大化することを目的とする。
論文 参考訳(メタデータ) (2024-07-08T13:41:21Z) - Spectral Graph Pruning Against Over-Squashing and Over-Smoothing [14.947660746690614]
エッジの削除はオーバースカッシングとオーバースムーシングを同時に扱うことができると我々は主張する。
このことは、エッジ削除がいかに改善され、スペクトルギャップの最適化が計算資源を減らすという一見非連結な目的に結びつくかを説明する。
論文 参考訳(メタデータ) (2024-04-06T12:40:21Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
信頼性オーグメンテーション(CONVERT)を用いたContrastiVe Graph ClustEringネットワークを提案する。
本手法では,データ拡張を可逆的パーターブ・リカバリネットワークにより処理する。
セマンティクスの信頼性をさらに保証するために、ネットワークを制約する新たなセマンティクス損失が提示される。
論文 参考訳(メタデータ) (2023-08-17T13:07:09Z) - Joint graph learning from Gaussian observations in the presence of
hidden nodes [26.133725549667734]
本稿では,隠れ変数の存在を考慮した共同グラフ学習法を提案する。
従来の考察から得られた構造を利用して凸最適化問題を提案する。
提案したアルゴリズムを異なるベースラインで比較し、合成グラフと実世界のグラフ上での性能を評価する。
論文 参考訳(メタデータ) (2022-12-04T13:03:41Z) - Are Gradients on Graph Structure Reliable in Gray-box Attacks? [56.346504691615934]
従来のグレーボックス攻撃者は、グラフ構造を乱すために、サロゲートモデルからの勾配を用いて脆弱なエッジを見つける。
本稿では,構造勾配の不確実性に起因する誤差を考察し,解析する。
本稿では,構造勾配の誤差を低減する手法を用いた新しい攻撃モデルを提案する。
論文 参考訳(メタデータ) (2022-08-07T06:43:32Z) - Improved Algorithms for Bandit with Graph Feedback via Regret
Decomposition [2.3034251503343466]
グラフフィードバックによるバンディットの問題は、マルチアームバンディット(MAB)問題と専門家のアドバイスによる学習の両方を一般化する。
本稿では,フィードバックグラフの分割に基づく新しいアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-30T13:07:42Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Meta Adversarial Perturbations [66.43754467275967]
メタ逆境摂動(MAP)の存在を示す。
MAPは1段階の上昇勾配更新によって更新された後、自然画像を高い確率で誤分類する。
これらの摂動は画像に依存しないだけでなく、モデルに依存しないものであり、単一の摂動は見えないデータポイントと異なるニューラルネットワークアーキテクチャにまたがってうまく一般化される。
論文 参考訳(メタデータ) (2021-11-19T16:01:45Z) - Regularizing Semi-supervised Graph Convolutional Networks with a
Manifold Smoothness Loss [12.948899990826426]
グラフ構造に関して定義された教師なし多様体の滑らかさ損失を提案し、これは正規化として損失関数に追加することができる。
我々は,多層パーセプトロンおよび既存のグラフネットワークの実験を行い,提案した損失を追加することにより,連続的に性能を向上させることを示す。
論文 参考訳(メタデータ) (2020-02-11T08:51:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。