A Survey of Methods for Mitigating Barren Plateaus for Parameterized Quantum Circuits
- URL: http://arxiv.org/abs/2406.14285v1
- Date: Thu, 20 Jun 2024 13:10:26 GMT
- Title: A Survey of Methods for Mitigating Barren Plateaus for Parameterized Quantum Circuits
- Authors: Michelle Gelman,
- Abstract summary: Barren Plateaus are a formidable challenge for hybrid quantum-classical algorithms that lead to flat plateaus in the loss function.
This paper provides a conceptual perspective between classical interpretations of vanishing gradients as well as dive into techniques of cost functions, entanglement, strategies to barren plateaus.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Barren Plateaus are a formidable challenge for hybrid quantum-classical algorithms that lead to flat plateaus in the loss function landscape making it difficult to take advantage of the expressive power of parameterized quantum circuits with gradient-based methods. Like in classical neural network models, parameterized quantum circuits suffer the same vanishing gradient issue due to large parameter spaces with non-convex landscapes. In this review, we present an overview of the different genesis for barren plateaus, mathematical formalisms of common themes around barren plateaus, and dives into gradients. The central objective is to provide a conceptual perspective between classical and quantum interpretations of vanishing gradients as well as dive into techniques involving cost functions, entanglement, and initialization strategies to mitigate barren plateaus. Addressing barren plateaus paves the way towards feasibility of many classically intractable applications for quantum simulation, optimization, chemistry, and quantum machine learning.
Related papers
- Avoiding barren plateaus via Gaussian Mixture Model [6.0599055267355695]
Variational quantum algorithms are one of the most representative algorithms in quantum computing.
They face challenges when dealing with large numbers of qubits, deep circuit layers, or global cost functions, making them often untrainable.
arXiv Detail & Related papers (2024-02-21T03:25:26Z) - Emergence of noise-induced barren plateaus in arbitrary layered noise models [44.99833362998488]
In variational quantum algorithms the parameters of a parameterized quantum circuit are optimized in order to minimize a cost function that encodes the solution of the problem.
We discuss how, and in which sense, the phenomenon of noise-induced barren plateaus emerges in parameterized quantum circuits with a layered noise model.
arXiv Detail & Related papers (2023-10-12T15:18:27Z) - From barren plateaus through fertile valleys: Conic extensions of
parameterised quantum circuits [0.0]
We introduce an approach that favours jumps out of a barren plateau into a fertile valley.
These operations are constructed from conic extensions of parameterised unitary quantum circuits.
We further reduce the problem of finding optimal jump directions to a low-dimensional generalised eigenvalue problem.
arXiv Detail & Related papers (2023-10-06T13:56:42Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Avoiding barren plateaus via transferability of smooth solutions in
Hamiltonian Variational Ansatz [0.0]
Variational Quantum Algorithms (VQAs) represent leading candidates to achieve computational speed-ups on current quantum devices.
Two major hurdles are the proliferation of low-quality variational local minima, and the exponential vanishing of gradients in the cost function landscape.
Here we show that by employing iterative search schemes one can effectively prepare the ground state of paradigmatic quantum many-body models.
arXiv Detail & Related papers (2022-06-04T12:52:29Z) - BEINIT: Avoiding Barren Plateaus in Variational Quantum Algorithms [0.7462336024223667]
Barren plateaus are a notorious problem in the optimization of variational quantum algorithms.
We propose an alternative strategy which initializes the parameters of a unitary gate by drawing from a beta distribution.
We empirically show that our proposed framework significantly reduces the possibility of a complex quantum neural network getting stuck in a barren plateau.
arXiv Detail & Related papers (2022-04-28T19:46:10Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Entanglement Devised Barren Plateau Mitigation [1.382143546774115]
We implicate random entanglement as the source of barren plateaus and characterize them in terms of many-body entanglement dynamics.
We propose and demonstrate a number of barren plateau ameliorating techniques.
We find that entanglement limiting, both automatic and engineered, is a hallmark of high-accuracy training.
arXiv Detail & Related papers (2020-12-22T17:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.