論文の概要: FIESTA: Fourier-Based Semantic Augmentation with Uncertainty Guidance for Enhanced Domain Generalizability in Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2406.14308v1
- Date: Thu, 20 Jun 2024 13:37:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:32:31.225257
- Title: FIESTA: Fourier-Based Semantic Augmentation with Uncertainty Guidance for Enhanced Domain Generalizability in Medical Image Segmentation
- Title(参考訳): FIESTA : 医用画像分割における領域一般化性向上のための不確かさ誘導によるフーリエベースセマンティック拡張
- Authors: Kwanseok Oh, Eunjin Jeon, Da-Woon Heo, Yooseung Shin, Heung-Il Suk,
- Abstract要約: 医用画像セグメンテーション(MIS)における単一ソース領域一般化(SDG)は、1つのソースドメインのみのデータを使用してモデルを一般化し、目に見えないターゲットドメインからデータをセグメントすることを目的としている。
既存の手法では、MISでよく見られる詳細や不確実な領域を十分に考慮できないことが多く、誤分類につながる。
本稿では、不確実性ガイダンスを用いたFIESTAと呼ばれるフーリエに基づく意味拡張手法を提案する。
- 参考スコア(独自算出の注目度): 10.351755243183383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-source domain generalization (SDG) in medical image segmentation (MIS) aims to generalize a model using data from only one source domain to segment data from an unseen target domain. Despite substantial advances in SDG with data augmentation, existing methods often fail to fully consider the details and uncertain areas prevalent in MIS, leading to mis-segmentation. This paper proposes a Fourier-based semantic augmentation method called FIESTA using uncertainty guidance to enhance the fundamental goals of MIS in an SDG context by manipulating the amplitude and phase components in the frequency domain. The proposed Fourier augmentative transformer addresses semantic amplitude modulation based on meaningful angular points to induce pertinent variations and harnesses the phase spectrum to ensure structural coherence. Moreover, FIESTA employs epistemic uncertainty to fine-tune the augmentation process, improving the ability of the model to adapt to diverse augmented data and concentrate on areas with higher ambiguity. Extensive experiments across three cross-domain scenarios demonstrate that FIESTA surpasses recent state-of-the-art SDG approaches in segmentation performance and significantly contributes to boosting the applicability of the model in medical imaging modalities.
- Abstract(参考訳): 医用画像セグメンテーション(MIS)における単一ソース領域一般化(SDG)は、1つのソースドメインのみのデータを使用してモデルを一般化し、目に見えないターゲットドメインからデータをセグメントすることを目的としている。
データ拡張によるSDGの大幅な進歩にもかかわらず、既存の手法ではMISで広く見られる詳細と不確実な領域を十分に考慮できず、誤分類につながることが多い。
本稿では、不確実性誘導を用いたFIESTAと呼ばれるフーリエに基づく意味拡張手法を提案し、周波数領域の振幅および位相成分を操作することにより、SDGコンテキストにおけるMISの基本目標を高める。
提案したフーリエ拡張変換器は、有意な角点に基づく意味振幅変調に対処し、関連する変動を誘発し、位相スペクトルを利用して構造的コヒーレンスを確保する。
さらに、FIESTAは、拡張プロセスの微調整に疫学的な不確実性を使用し、多様な拡張データに適応し、あいまいさの高い領域に集中するモデルの能力を改善している。
3つのクロスドメインシナリオにわたる大規模な実験により、FIESTAはセグメンテーション性能における最近の最先端のSDGアプローチを超越し、医用画像モダリティにおけるモデルの適用性の向上に大きく貢献していることが示された。
関連論文リスト
- Medical Image Segmentation via Single-Source Domain Generalization with Random Amplitude Spectrum Synthesis [13.794335166617063]
医用画像のセグメンテーションの分野は、臨床データセットのドメインシフトにより、ドメイン一般化(DG)によって挑戦される。
従来の単一ソースドメインの一般化手法は、ドメインの矛盾を最小限に抑えるためにデータ拡張手法を積み重ねることに頼っている。
医用画像のトレーニングとしてランダム振幅スペクトル合成(RASS)を提案する。
論文 参考訳(メタデータ) (2024-09-07T08:58:04Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS)は、ラベル付きソースドメインからラベル付きターゲットドメインに監督を移すことを目的としている。
本稿では,特徴量と特徴量との相違に対処するQuad-directional Mixup(QuadMix)法を提案する。
提案手法は,4つの挑戦的UDA-SSベンチマークにおいて,最先端の成果を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2023-11-22T09:18:49Z) - Frequency-mixed Single-source Domain Generalization for Medical Image
Segmentation [29.566769388674473]
医用画像セグメンテーションの欠如は、ディープラーニングモデルのための十分なトレーニングデータを集める上での課題となっている。
周波数混合単一ソース領域一般化法(FreeSDG)という新しい手法を提案する。
3つのモードの5つのデータセットに対する実験結果から,提案アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2023-07-18T06:44:45Z) - Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical
Image Segmentation [18.830738606514736]
本研究は、堅牢な医用画像分割のためのカリキュラムベースの拡張フーリエドメイン適応(Curri-AFDA)を提案する。
特に、カリキュラム学習戦略は、異なるレベルのデータシフトの下でのモデルの因果関係に基づいている。
複数のサイトやスキャナーから収集した網膜と核の2つのセグメンテーションタスクの実験から,提案手法が優れた適応と一般化性能をもたらすことが示唆された。
論文 参考訳(メタデータ) (2023-06-06T08:56:58Z) - Domain Generalisation via Domain Adaptation: An Adversarial Fourier
Amplitude Approach [13.642506915023871]
最悪の対象ドメインを逆向きに合成し、その最悪の対象ドメインにモデルを適用する。
DomainBedNetデータセットでは、提案手法により、ドメインの一般化性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-23T14:19:07Z) - Learning to Augment via Implicit Differentiation for Domain
Generalization [107.9666735637355]
ドメイン一般化(DG)は、複数のソースドメインを活用してドメイン一般化可能なモデルを学ぶことで、この問題を克服することを目的としている。
本稿では,AugLearnと呼ばれる新しい拡張型DG手法を提案する。
AugLearnは、PACS、Office-Home、Digits-DGの3つの標準DGベンチマークで効果を示す。
論文 参考訳(メタデータ) (2022-10-25T18:51:51Z) - Segmentation Consistency Training: Out-of-Distribution Generalization
for Medical Image Segmentation [2.0978389798793873]
一般化可能性(Generalizability)は、特に医用画像の領域において、ディープラーニングにおける大きな課題の1つと見なされている。
本稿では,データ拡張の代替として,一貫性トレーニング(Consistency Training)を導入する。
一貫性トレーニングは、いくつかのアウト・オブ・ディストリビューションデータセットにおいて、従来のデータ拡張よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-30T20:57:15Z) - A Fourier-based Framework for Domain Generalization [82.54650565298418]
ドメインの一般化は、複数のソースドメインから伝達可能な知識を学習して、未確認のターゲットドメインに一般化することでこの問題に対処することを目的としている。
本稿では、ドメイン一般化のための新しいフーリエに基づく視点を紹介する。
3つのベンチマーク実験により,提案手法は領域一般化のための最先端性能を実現することができることを示した。
論文 参考訳(メタデータ) (2021-05-24T06:50:30Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
ドメイン一般化(DG)に基づく対スプーフィングアプローチは、予期せぬシナリオの堅牢性のために注目を集めています。
ドメインダイナミック調整メタラーニング(D2AM)についてドメインラベルを使わずに提案する。
この制限を克服するため,ドメインダイナミック調整メタラーニング(D2AM)を提案する。
論文 参考訳(メタデータ) (2021-05-06T06:04:59Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
前立腺MRIのセグメント化におけるモデル一般化を改善するために,新しい形状認識メタラーニング手法を提案する。
実験結果から,本手法は未確認領域の6つの設定すべてにおいて,最先端の一般化手法を一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-04T07:56:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。