The neural correlates of logical-mathematical symbol systems processing resemble that of spatial cognition more than natural language processing
- URL: http://arxiv.org/abs/2406.14358v1
- Date: Thu, 20 Jun 2024 14:31:09 GMT
- Title: The neural correlates of logical-mathematical symbol systems processing resemble that of spatial cognition more than natural language processing
- Authors: Yuannan Li, Shan Xu, Jia Liu,
- Abstract summary: The ability to manipulate logical-mathematical symbols (LMS) is a cognitive skill arguably unique to humans.
Previous studies have pinpointed two primary candidates, natural language processing and spatial cognition.
The present study compared the neural correlates at the domain level with both automated meta-analysis and synthesized maps.
- Score: 6.613108038833871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to manipulate logical-mathematical symbols (LMS), encompassing tasks such as calculation, reasoning, and programming, is a cognitive skill arguably unique to humans. Considering the relatively recent emergence of this ability in human evolutionary history, it has been suggested that LMS processing may build upon more fundamental cognitive systems, possibly through neuronal recycling. Previous studies have pinpointed two primary candidates, natural language processing and spatial cognition. Existing comparisons between these domains largely relied on task-level comparison, which may be confounded by task idiosyncrasy. The present study instead compared the neural correlates at the domain level with both automated meta-analysis and synthesized maps based on three representative LMS tasks, reasoning, calculation, and mental programming. Our results revealed a more substantial cortical overlap between LMS processing and spatial cognition, in contrast to language processing. Furthermore, in regions activated by both spatial and language processing, the multivariate activation pattern for LMS processing exhibited greater multivariate similarity to spatial cognition than to language processing. A hierarchical clustering analysis further indicated that typical LMS tasks were indistinguishable from spatial cognition tasks at the neural level, suggesting an inherent connection between these two cognitive processes. Taken together, our findings support the hypothesis that spatial cognition is likely the basis of LMS processing, which may shed light on the limitations of large language models in logical reasoning, particularly those trained exclusively on textual data without explicit emphasis on spatial content.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Analysis of Argument Structure Constructions in a Deep Recurrent Language Model [0.0]
We explore the representation and processing of Argument Structure Constructions (ASCs) in a recurrent neural language model.
Our results show that sentence representations form distinct clusters corresponding to the four ASCs across all hidden layers.
This indicates that even a relatively simple, brain-constrained recurrent neural network can effectively differentiate between various construction types.
arXiv Detail & Related papers (2024-08-06T09:27:41Z) - Lost in Translation: The Algorithmic Gap Between LMs and the Brain [8.799971499357499]
Language Models (LMs) have achieved impressive performance on various linguistic tasks, but their relationship to human language processing in the brain remains unclear.
This paper examines the gaps and overlaps between LMs and the brain at different levels of analysis.
We discuss how insights from neuroscience, such as sparsity, modularity, internal states, and interactive learning, can inform the development of more biologically plausible language models.
arXiv Detail & Related papers (2024-07-05T17:43:16Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
spatial reasoning is a crucial component of both biological and artificial intelligence.
We present a comprehensive study of the capability of current state-of-the-art large language models (LLMs) on spatial reasoning.
arXiv Detail & Related papers (2024-06-07T01:06:34Z) - Contextual Feature Extraction Hierarchies Converge in Large Language
Models and the Brain [12.92793034617015]
We show that as large language models (LLMs) achieve higher performance on benchmark tasks, they become more brain-like.
We also show the importance of contextual information in improving model performance and brain similarity.
arXiv Detail & Related papers (2024-01-31T08:48:35Z) - Divergences between Language Models and Human Brains [63.405788999891335]
Recent research has hinted that brain signals can be effectively predicted using internal representations of language models (LMs)
We show that there are clear differences in how LMs and humans represent and use language.
We identify two domains that are not captured well by LMs: social/emotional intelligence and physical commonsense.
arXiv Detail & Related papers (2023-11-15T19:02:40Z) - Unveiling A Core Linguistic Region in Large Language Models [49.860260050718516]
This paper conducts an analogical research using brain localization as a prototype.
We have discovered a core region in large language models that corresponds to linguistic competence.
We observe that an improvement in linguistic competence does not necessarily accompany an elevation in the model's knowledge level.
arXiv Detail & Related papers (2023-10-23T13:31:32Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
We explore the use of intuitive language-based abstractions to support analogy in AI systems.
Specifically, we apply large pre-trained language models (PLMs) to visual Raven's Progressive Matrices ( RPM)
We find that PLMs exhibit a striking capacity for zero-shot relational reasoning, exceeding human performance and nearing supervised vision-based methods.
arXiv Detail & Related papers (2023-05-28T04:22:26Z) - Information-Restricted Neural Language Models Reveal Different Brain
Regions' Sensitivity to Semantics, Syntax and Context [87.31930367845125]
We trained a lexical language model, Glove, and a supra-lexical language model, GPT-2, on a text corpus.
We then assessed to what extent these information-restricted models were able to predict the time-courses of fMRI signal of humans listening to naturalistic text.
Our analyses show that, while most brain regions involved in language are sensitive to both syntactic and semantic variables, the relative magnitudes of these effects vary a lot across these regions.
arXiv Detail & Related papers (2023-02-28T08:16:18Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
We show a low-dimensional structure where language models and translation models smoothly interpolate between word embeddings, syntactic and semantic tasks, and future word embeddings.
We find that this representation embedding can predict how well each individual feature space maps to human brain responses to natural language stimuli recorded using fMRI.
This suggests that the embedding captures some part of the brain's natural language representation structure.
arXiv Detail & Related papers (2021-06-09T22:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.