PoseBench: Benchmarking the Robustness of Pose Estimation Models under Corruptions
- URL: http://arxiv.org/abs/2406.14367v2
- Date: Sat, 14 Sep 2024 02:37:20 GMT
- Title: PoseBench: Benchmarking the Robustness of Pose Estimation Models under Corruptions
- Authors: Sihan Ma, Jing Zhang, Qiong Cao, Dacheng Tao,
- Abstract summary: Pose estimation aims to accurately identify anatomical keypoints in humans and animals using monocular images.
Current models are typically trained and tested on clean data, potentially overlooking the corruption during real-world deployment.
We introduce PoseBench, a benchmark designed to evaluate the robustness of pose estimation models against real-world corruption.
- Score: 57.871692507044344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pose estimation aims to accurately identify anatomical keypoints in humans and animals using monocular images, which is crucial for various applications such as human-machine interaction, embodied AI, and autonomous driving. While current models show promising results, they are typically trained and tested on clean data, potentially overlooking the corruption during real-world deployment and thus posing safety risks in practical scenarios. To address this issue, we introduce PoseBench, a comprehensive benchmark designed to evaluate the robustness of pose estimation models against real-world corruption. We evaluated 60 representative models, including top-down, bottom-up, heatmap-based, regression-based, and classification-based methods, across three datasets for human and animal pose estimation. Our evaluation involves 10 types of corruption in four categories: 1) blur and noise, 2) compression and color loss, 3) severe lighting, and 4) masks. Our findings reveal that state-of-the-art models are vulnerable to common real-world corruptions and exhibit distinct behaviors when tackling human and animal pose estimation tasks. To improve model robustness, we delve into various design considerations, including input resolution, pre-training datasets, backbone capacity, post-processing, and data augmentations. We hope that our benchmark will serve as a foundation for advancing research in robust pose estimation. The benchmark and source code will be released at https://xymsh.github.io/PoseBench
Related papers
- Towards Robust and Expressive Whole-body Human Pose and Shape Estimation [51.457517178632756]
Whole-body pose and shape estimation aims to jointly predict different behaviors of the entire human body from a monocular image.
Existing methods often exhibit degraded performance under the complexity of in-the-wild scenarios.
We propose a novel framework to enhance the robustness of whole-body pose and shape estimation.
arXiv Detail & Related papers (2023-12-14T08:17:42Z) - Of Mice and Pose: 2D Mouse Pose Estimation from Unlabelled Data and
Synthetic Prior [0.7499722271664145]
We propose an approach for estimating 2D mouse body pose from unlabelled images using a synthetically generated empirical pose prior.
We adapt this method to the limb structure of the mouse and generate the empirical prior of 2D poses from a synthetic 3D mouse model.
In experiments on a new mouse video dataset, we evaluate the performance of the approach by comparing pose predictions to a manually obtained ground truth.
arXiv Detail & Related papers (2023-07-25T09:31:55Z) - OOD-CV-v2: An extended Benchmark for Robustness to Out-of-Distribution
Shifts of Individual Nuisances in Natural Images [59.51657161097337]
OOD-CV-v2 is a benchmark dataset that includes out-of-distribution examples of 10 object categories in terms of pose, shape, texture, context and the weather conditions.
In addition to this novel dataset, we contribute extensive experiments using popular baseline methods.
arXiv Detail & Related papers (2023-04-17T20:39:25Z) - PoseExaminer: Automated Testing of Out-of-Distribution Robustness in
Human Pose and Shape Estimation [15.432266117706018]
We develop a simulator that can be controlled in a fine-grained manner to explore the manifold of images of human pose.
We introduce a learning-based testing method, termed PoseExaminer, that automatically diagnoses HPS algorithms.
We show that our PoseExaminer discovers a variety of limitations in current state-of-the-art models that are relevant in real-world scenarios.
arXiv Detail & Related papers (2023-03-13T17:58:54Z) - SuperAnimal pretrained pose estimation models for behavioral analysis [42.206265576708255]
Quantification of behavior is critical in applications ranging from neuroscience, veterinary medicine and animal conservation efforts.
We present a series of technical innovations that enable a new method, collectively called SuperAnimal, to develop unified foundation models.
arXiv Detail & Related papers (2022-03-14T18:46:57Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - Adapted Human Pose: Monocular 3D Human Pose Estimation with Zero Real 3D
Pose Data [14.719976311208502]
Training vs. test data domain gaps often negatively affect model performance.
We present our adapted human pose (AHuP) approach that addresses adaptation problems in both appearance and pose spaces.
AHuP is built around a practical assumption that in real applications, data from target domain could be inaccessible or only limited information can be acquired.
arXiv Detail & Related papers (2021-05-23T01:20:40Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.