Of Mice and Pose: 2D Mouse Pose Estimation from Unlabelled Data and
Synthetic Prior
- URL: http://arxiv.org/abs/2307.13361v1
- Date: Tue, 25 Jul 2023 09:31:55 GMT
- Title: Of Mice and Pose: 2D Mouse Pose Estimation from Unlabelled Data and
Synthetic Prior
- Authors: Jose Sosa, Sharn Perry, Jane Alty, and David Hogg
- Abstract summary: We propose an approach for estimating 2D mouse body pose from unlabelled images using a synthetically generated empirical pose prior.
We adapt this method to the limb structure of the mouse and generate the empirical prior of 2D poses from a synthetic 3D mouse model.
In experiments on a new mouse video dataset, we evaluate the performance of the approach by comparing pose predictions to a manually obtained ground truth.
- Score: 0.7499722271664145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous fields, such as ecology, biology, and neuroscience, use animal
recordings to track and measure animal behaviour. Over time, a significant
volume of such data has been produced, but some computer vision techniques
cannot explore it due to the lack of annotations. To address this, we propose
an approach for estimating 2D mouse body pose from unlabelled images using a
synthetically generated empirical pose prior. Our proposal is based on a recent
self-supervised method for estimating 2D human pose that uses single images and
a set of unpaired typical 2D poses within a GAN framework. We adapt this method
to the limb structure of the mouse and generate the empirical prior of 2D poses
from a synthetic 3D mouse model, thereby avoiding manual annotation. In
experiments on a new mouse video dataset, we evaluate the performance of the
approach by comparing pose predictions to a manually obtained ground truth. We
also compare predictions with those from a supervised state-of-the-art method
for animal pose estimation. The latter evaluation indicates promising results
despite the lack of paired training data. Finally, qualitative results using a
dataset of horse images show the potential of the setting to adapt to other
animal species.
Related papers
- ZebraPose: Zebra Detection and Pose Estimation using only Synthetic Data [0.2302001830524133]
We use synthetic data generated with a 3D simulator to obtain the first synthetic dataset that can be used for both detection and 2D pose estimation of zebras.
We extensively train and benchmark our detection and 2D pose estimation models on multiple real-world and synthetic datasets.
These experiments show how the models trained from scratch and only with synthetic data can consistently generalize to real-world images of zebras.
arXiv Detail & Related papers (2024-08-20T13:28:37Z) - PoseBench: Benchmarking the Robustness of Pose Estimation Models under Corruptions [57.871692507044344]
Pose estimation aims to accurately identify anatomical keypoints in humans and animals using monocular images.
Current models are typically trained and tested on clean data, potentially overlooking the corruption during real-world deployment.
We introduce PoseBench, a benchmark designed to evaluate the robustness of pose estimation models against real-world corruption.
arXiv Detail & Related papers (2024-06-20T14:40:17Z) - ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation [54.86887812687023]
Most 3D-HPE methods rely on regression models, which assume a one-to-one mapping between inputs and outputs.
We propose ManiPose, a novel manifold-constrained multi-hypothesis model capable of proposing multiple candidate 3D poses for each 2D input.
Unlike previous multi-hypothesis approaches, our solution is completely supervised and does not rely on complex generative models.
arXiv Detail & Related papers (2023-12-11T13:50:10Z) - Self-supervised 3D Human Pose Estimation from a Single Image [1.0878040851638]
We propose a new self-supervised method for predicting 3D human body pose from a single image.
The prediction network is trained from a dataset of unlabelled images depicting people in typical poses and a set of unpaired 2D poses.
arXiv Detail & Related papers (2023-04-05T10:26:21Z) - Prior-Aware Synthetic Data to the Rescue: Animal Pose Estimation with
Very Limited Real Data [18.06492246414256]
We present a data efficient strategy for pose estimation in quadrupeds that requires only a small amount of real images from the target animal.
It is confirmed that fine-tuning a backbone network with pretrained weights on generic image datasets such as ImageNet can mitigate the high demand for target animal pose data.
We introduce a prior-aware synthetic animal data generation pipeline called PASyn to augment the animal pose data essential for robust pose estimation.
arXiv Detail & Related papers (2022-08-30T01:17:50Z) - Learning Dynamics via Graph Neural Networks for Human Pose Estimation
and Tracking [98.91894395941766]
We propose a novel online approach to learning the pose dynamics, which are independent of pose detections in current fame.
Specifically, we derive this prediction of dynamics through a graph neural network(GNN) that explicitly accounts for both spatial-temporal and visual information.
Experiments on PoseTrack 2017 and PoseTrack 2018 datasets demonstrate that the proposed method achieves results superior to the state of the art on both human pose estimation and tracking tasks.
arXiv Detail & Related papers (2021-06-07T16:36:50Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
Deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation.
This paper proposes a novel data augmentation method that is scalable for massive amount of training data.
Our method synthesizes unseen 3D human skeletons based on a hierarchical human representation and synthesizings inspired by prior knowledge.
arXiv Detail & Related papers (2020-06-14T03:09:52Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Deformation-aware Unpaired Image Translation for Pose Estimation on
Laboratory Animals [56.65062746564091]
We aim to capture the pose of neuroscience model organisms, without using any manual supervision, to study how neural circuits orchestrate behaviour.
Our key contribution is the explicit and independent modeling of appearance, shape and poses in an unpaired image translation framework.
We demonstrate improved pose estimation accuracy on Drosophila melanogaster (fruit fly), Caenorhabditis elegans (worm) and Danio rerio (zebrafish)
arXiv Detail & Related papers (2020-01-23T15:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.