FutureNet-LOF: Joint Trajectory Prediction and Lane Occupancy Field Prediction with Future Context Encoding
- URL: http://arxiv.org/abs/2406.14422v1
- Date: Thu, 20 Jun 2024 15:41:53 GMT
- Title: FutureNet-LOF: Joint Trajectory Prediction and Lane Occupancy Field Prediction with Future Context Encoding
- Authors: Mingkun Wang, Xiaoguang Ren, Ruochun Jin, Minglong Li, Xiaochuan Zhang, Changqian Yu, Mingxu Wang, Wenjing Yang,
- Abstract summary: We propose FutureNet, which explicitly integrates initially predicted trajectories into the future scenario.
We also propose Lane Occupancy Field (LOF), a new representation with lane semantics for motion forecasting in autonomous driving.
Our approach ranks 1st on two large-scale motion forecasting benchmarks: Argoverse 1 and Argoverse 2.
- Score: 10.188379670636092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most prior motion prediction endeavors in autonomous driving have inadequately encoded future scenarios, leading to predictions that may fail to accurately capture the diverse movements of agents (e.g., vehicles or pedestrians). To address this, we propose FutureNet, which explicitly integrates initially predicted trajectories into the future scenario and further encodes these future contexts to enhance subsequent forecasting. Additionally, most previous motion forecasting works have focused on predicting independent futures for each agent. However, safe and smooth autonomous driving requires accurately predicting the diverse future behaviors of numerous surrounding agents jointly in complex dynamic environments. Given that all agents occupy certain potential travel spaces and possess lane driving priority, we propose Lane Occupancy Field (LOF), a new representation with lane semantics for motion forecasting in autonomous driving. LOF can simultaneously capture the joint probability distribution of all road participants' future spatial-temporal positions. Due to the high compatibility between lane occupancy field prediction and trajectory prediction, we propose a novel network with future context encoding for the joint prediction of these two tasks. Our approach ranks 1st on two large-scale motion forecasting benchmarks: Argoverse 1 and Argoverse 2.
Related papers
- Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory.
This work instead relies on having knowledge of the current state and intended direction to make predictions for multiple vehicles at intersections.
Message passing of this information between the vehicles provides each one of them a more holistic overview of the environment.
arXiv Detail & Related papers (2023-01-06T15:13:23Z) - VectorFlow: Combining Images and Vectors for Traffic Occupancy and Flow
Prediction [18.277777620073685]
We propose a novel occupancy flow fields predictor to produce accurate occupancy and flow predictions.
Our model ranks 3rd place on the Open dataset Occupancy and Flow Prediction Challenge, and achieves the best performance in the occluded occupancy and flow prediction task.
arXiv Detail & Related papers (2022-08-09T03:49:04Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - LaPred: Lane-Aware Prediction of Multi-Modal Future Trajectories of
Dynamic Agents [10.869902339190949]
We propose a novel prediction model, referred to as the lane-aware prediction (LaPred) network.
LaPred uses the instance-level lane entities extracted from a semantic map to predict the multi-modal future trajectories.
The experiments conducted on the public nuScenes and Argoverse dataset demonstrate that the proposed LaPred method significantly outperforms the existing prediction models.
arXiv Detail & Related papers (2021-04-01T04:33:36Z) - LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving [139.33800431159446]
LookOut is an approach to jointly perceive the environment and predict a diverse set of futures from sensor data.
We show that our model demonstrates significantly more diverse and sample-efficient motion forecasting in a large-scale self-driving dataset.
arXiv Detail & Related papers (2021-01-16T23:19:22Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
Viable solutions must account for both the static geometric context, such as road lanes, and dynamic social interactions arising from multiple actors.
We propose a recurrent graph-based attentional approach with interpretable geometric (actor-lane) and social (actor-actor) relationships.
Our model can produce diverse predictions conditioned on hypothetical or "what-if" road lanes and multi-actor interactions.
arXiv Detail & Related papers (2020-08-24T17:49:30Z) - TNT: Target-driveN Trajectory Prediction [76.21200047185494]
We develop a target-driven trajectory prediction framework for moving agents.
We benchmark it on trajectory prediction of vehicles and pedestrians.
We outperform state-of-the-art on Argoverse Forecasting, INTERACTION, Stanford Drone and an in-house Pedestrian-at-Intersection dataset.
arXiv Detail & Related papers (2020-08-19T06:52:46Z) - AMENet: Attentive Maps Encoder Network for Trajectory Prediction [35.22312783822563]
Trajectory prediction is critical for applications of planning safe future movements.
We propose an end-to-end generative model named Attentive Maps Network (AMENet)
AMENet encodes the agent's motion and interaction information for accurate and realistic multi-path trajectory prediction.
arXiv Detail & Related papers (2020-06-15T10:00:07Z) - Physically constrained short-term vehicle trajectory forecasting with
naive semantic maps [6.85316573653194]
We propose a model that learns to extract relevant road features from semantic maps as well as general motion of agents.
We show that our model is not only capable of anticipating future motion whilst taking into consideration road boundaries, but can also effectively and precisely predict trajectories for a longer time horizon than initially trained for.
arXiv Detail & Related papers (2020-06-09T09:52:44Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.