A mid-circuit erasure check on a dual-rail cavity qubit using the joint-photon number-splitting regime of circuit QED
- URL: http://arxiv.org/abs/2406.14621v2
- Date: Tue, 13 Aug 2024 13:52:32 GMT
- Title: A mid-circuit erasure check on a dual-rail cavity qubit using the joint-photon number-splitting regime of circuit QED
- Authors: Stijn J. de Graaf, Sophia H. Xue, Benjamin J. Chapman, James D. Teoh, Takahiro Tsunoda, Patrick Winkel, John W. O. Garmon, Kathleen M. Chang, Luigi Frunzio, Shruti Puri, Robert J. Schoelkopf,
- Abstract summary: We show that the spectrum of an ancilla statically coupled to a single mode can be made to depend on the joint photon number in two modes.
We realize a hardware-efficient erasure check for a dual-rail qubit encoded in two superconducting cavities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum control of a linear oscillator using a static dispersive coupling to a nonlinear ancilla underpins a wide variety of experiments in circuit QED. Extending this control to more than one oscillator while minimizing the required connectivity to the ancilla would enable hardware-efficient multi-mode entanglement and measurements. We show that the spectrum of an ancilla statically coupled to a single mode can be made to depend on the joint photon number in two modes by applying a strong parametric beamsplitter coupling between them. This `joint-photon number-splitting' regime extends single-oscillator techniques to two-oscillator control, which we use to realize a hardware-efficient erasure check for a dual-rail qubit encoded in two superconducting cavities. By leveraging the beamsplitter coupling already required for single-qubit gates, this scheme permits minimal connectivity between circuit elements. Furthermore, the flexibility to choose the pulse shape allows us to limit the susceptibility to different error channels. We use this scheme to detect leakage errors with a missed erasure fraction of $(9.0 \pm 0.5)\times10^{-4}$, while incurring an erasure rate of $2.92 \pm 0.01\%$ and a Pauli error rate of $0.31 \pm 0.01\%$, both of which are dominated by cavity errors.
Related papers
- Designing high-fidelity two-qubit gates between fluxonium qubits [0.19528996680336308]
We propose a two-qubit gate between fluxonium qubits for minimal error, speed, and control simplicity.
Our architecture consists of two fluxoniums coupled via a linear resonator.
We predict an open-system average CZ gate infidelity of $1.86 times 10-4$ in 70ns.
arXiv Detail & Related papers (2024-03-12T01:56:21Z) - Efficient decoupling of a non-linear qubit mode from its environment [0.9533143628888118]
We make use of the design flexibility of superconducting quantum circuits to form a multi-mode element with symmetry-protected modes.
The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions.
We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator.
arXiv Detail & Related papers (2023-12-28T12:16:29Z) - Flux-Tunable Hybridization in a Double Quantum Dot Interferometer [7.0140131556353]
tuning of the tunnel coupling between two such electronic levels with flux, implemented in a loop comprising two quantum dots.
Results establish the feasibility and limitations of parity readout of qubits with tunnel couplings tuned by flux.
arXiv Detail & Related papers (2023-03-07T18:57:31Z) - A high on-off ratio beamsplitter interaction for gates on bosonically
encoded qubits [40.96261204117952]
A qubit in a high quality superconducting microwave cavity offers the opportunity to perform the first layer of error correction in a single device.
We use a 3-wave mixing coupling element to engineer a programmable beamsplitter interaction between two bosonic modes separated by more than an octave in frequency.
We then introduce a new protocol to realize a hybrid controlled-SWAP operation in the regime $g_bsapproxchi$, in which a transmon provides the control bit for the SWAP of two bosonic modes.
arXiv Detail & Related papers (2022-12-22T18:07:29Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Ancilla-Error-Transparent Controlled Beam Splitter Gate [0.0]
We propose a new realization of a hybrid cSWAP utilizing Kerr-cat' qubits.
Kerr-cat is used to generate a controlled-phase beam splitter (cPBS) operation.
The strongly biased error channel for the Kerr-cat has phase flips which dominate over bit flips.
arXiv Detail & Related papers (2021-12-08T16:31:50Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z) - Switching dynamics of single and coupled VO2-based oscillators as
elements of neural networks [55.41644538483948]
We report on the switching dynamics of both single and coupled VO2-based oscillators, with resistive and capacitive coupling, and explore the capability of their application in neural networks.
For the resistive coupling, it is shown that synchronization takes place at a certain value of the coupling resistance, though it is unstable and a synchronization failure occurs periodically.
For the capacitive coupling, two synchronization modes, with weak and strong coupling, are found. The transition between these modes is accompanied by chaotic oscillations.
arXiv Detail & Related papers (2020-01-07T02:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.