Adaptive Manipulation using Behavior Trees
- URL: http://arxiv.org/abs/2406.14634v2
- Date: Thu, 12 Sep 2024 17:37:54 GMT
- Title: Adaptive Manipulation using Behavior Trees
- Authors: Jacques Cloete, Wolfgang Merkt, Ioannis Havoutis,
- Abstract summary: We present the adaptive behavior tree, which enables a robot to quickly adapt to both visual and non-visual observations during task execution.
We test our approach on a number of tasks commonly found in industrial settings.
- Score: 12.061325774210392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many manipulation tasks pose a challenge since they depend on non-visual environmental information that can only be determined after sustained physical interaction has already begun. This is particularly relevant for effort-sensitive, dynamics-dependent tasks such as tightening a valve. To perform these tasks safely and reliably, robots must be able to quickly adapt in response to unexpected changes during task execution. Humans can intuitively respond and adapt their manipulation strategy to suit such problems, but representing and implementing such behaviors for robots remains an open question. We present the adaptive behavior tree, which enables a robot to quickly adapt to both visual and non-visual observations during task execution, preempting task failure or switching to a different strategy based on data from previous attempts. We test our approach on a number of tasks commonly found in industrial settings. Our results demonstrate safety, robustness (100% success rate for all but one experiment) and efficiency in task completion (eg, an overall task speedup of 46% on average for valve tightening), and would reduce dependency on human supervision and intervention.
Related papers
- Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Rapid Motor Adaptation for Robotic Manipulator Arms [7.592744797132762]
Development of generalizable manipulation skills is a core challenge in embodied AI.
Rapid Motor Adaptation (RMA) offers a promising solution to this challenge.
We develop agents tailored for rapid motor adaptation in a variety of manipulation tasks.
arXiv Detail & Related papers (2023-12-07T20:11:03Z) - BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning [108.41464483878683]
We study the problem of enabling a vision-based robotic manipulation system to generalize to novel tasks.
We develop an interactive and flexible imitation learning system that can learn from both demonstrations and interventions.
When scaling data collection on a real robot to more than 100 distinct tasks, we find that this system can perform 24 unseen manipulation tasks with an average success rate of 44%.
arXiv Detail & Related papers (2022-02-04T07:30:48Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We suggest an approach to select which tasks should train together in multi-task learning models.
Our method determines task groupings in a single training run by co-training all tasks together and quantifying the effect to which one task's gradient would affect another task's loss.
arXiv Detail & Related papers (2021-09-10T02:01:43Z) - Behavior Self-Organization Supports Task Inference for Continual Robot
Learning [18.071689266826212]
We propose a novel approach to continual learning of robotic control tasks.
Our approach performs unsupervised learning of behavior embeddings by incrementally self-organizing demonstrated behaviors.
Unlike previous approaches, our approach makes no assumptions about task distribution and requires no task exploration to infer tasks.
arXiv Detail & Related papers (2021-07-09T16:37:27Z) - Evolving Hierarchical Memory-Prediction Machines in Multi-Task
Reinforcement Learning [4.030910640265943]
Behavioural agents must generalize across a variety of environments and objectives over time.
We use genetic programming to evolve highly-generalized agents capable of operating in six unique environments from the control literature.
We show that emergent hierarchical structure in the evolving programs leads to multi-task agents that succeed by performing a temporal decomposition and encoding of the problem environments in memory.
arXiv Detail & Related papers (2021-06-23T21:34:32Z) - Modeling Long-horizon Tasks as Sequential Interaction Landscapes [75.5824586200507]
We present a deep learning network that learns dependencies and transitions across subtasks solely from a set of demonstration videos.
We show that these symbols can be learned and predicted directly from image observations.
We evaluate our framework on two long horizon tasks: (1) block stacking of puzzle pieces being executed by humans, and (2) a robot manipulation task involving pick and place of objects and sliding a cabinet door with a 7-DoF robot arm.
arXiv Detail & Related papers (2020-06-08T18:07:18Z) - Learning Compliance Adaptation in Contact-Rich Manipulation [81.40695846555955]
We propose a novel approach for learning predictive models of force profiles required for contact-rich tasks.
The approach combines an anomaly detection based on Bidirectional Gated Recurrent Units (Bi-GRU) and an adaptive force/impedance controller.
arXiv Detail & Related papers (2020-05-01T05:23:34Z) - Hierarchical Reinforcement Learning as a Model of Human Task
Interleaving [60.95424607008241]
We develop a hierarchical model of supervisory control driven by reinforcement learning.
The model reproduces known empirical effects of task interleaving.
The results support hierarchical RL as a plausible model of task interleaving.
arXiv Detail & Related papers (2020-01-04T17:53:28Z) - Meta Adaptation using Importance Weighted Demonstrations [19.37671674146514]
In some cases, the distribution shifts, so much, that it is difficult for an agent to infer the new task.
We propose a novel algorithm to generalize on any related task by leveraging prior knowledge on a set of specific tasks.
We show experiments where the robot is trained from a diversity of environmental tasks and is also able to adapt to an unseen environment.
arXiv Detail & Related papers (2019-11-23T07:22:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.