Life, uh, Finds a Way: Systematic Neural Search
- URL: http://arxiv.org/abs/2410.01349v1
- Date: Wed, 2 Oct 2024 09:06:54 GMT
- Title: Life, uh, Finds a Way: Systematic Neural Search
- Authors: Alex Baranski, Jun Tani,
- Abstract summary: We tackle the challenge of rapidly adapting an agent's behavior to solve continuous problems in settings.
Instead of focusing on deep reinforcement learning, we propose viewing behavior as the physical manifestation of a search procedure.
We describe an algorithm that implicitly enumerates behaviors by regulating the tight feedback loop between execution of behaviors and mutation of the graph.
- Score: 2.163881720692685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle the challenge of rapidly adapting an agent's behavior to solve spatiotemporally continuous problems in novel settings. Animals exhibit extraordinary abilities to adapt to new contexts, a capacity unmatched by artificial systems. Instead of focusing on generalization through deep reinforcement learning, we propose viewing behavior as the physical manifestation of a search procedure, where robust problem-solving emerges from an exhaustive search across all possible behaviors. Surprisingly, this can be done efficiently using online modification of a cognitive graph that guides action, challenging the predominant view that exhaustive search in continuous spaces is impractical. We describe an algorithm that implicitly enumerates behaviors by regulating the tight feedback loop between execution of behaviors and mutation of the graph, and provide a neural implementation based on Hebbian learning and a novel high-dimensional harmonic representation inspired by entorhinal cortex. By framing behavior as search, we provide a mathematically simple and biologically plausible model for real-time behavioral adaptation, successfully solving a variety of continuous state-space navigation problems. This framework not only offers a flexible neural substrate for other applications but also presents a powerful paradigm for understanding adaptive behavior. Our results suggest potential advancements in developmental learning and unsupervised skill acquisition, paving the way for autonomous robots to master complex skills in data-sparse environments demanding flexibility.
Related papers
- Behavioral Exploration: Learning to Explore via In-Context Adaptation [53.92981562916783]
We train a long-context generative model to predict expert actions conditioned on a context of past observations and a measure of how exploratory'' the expert's behaviors are relative to this context.<n>This enables the model to not only mimic the behavior of an expert, but also, by feeding its past history of interactions into its context, to select different expert behaviors than what have been previously selected.<n>We demonstrate the effectiveness of our method in both simulated locomotion and manipulation settings, as well as on real-world robotic manipulation tasks.
arXiv Detail & Related papers (2025-07-11T21:36:19Z) - Logarithmic Regret for Nonlinear Control [5.473636587010879]
We address the problem of learning to control an unknown nonlinear dynamical system through sequential interactions.<n>Motivated by high-stakes applications in which mistakes can be catastrophic, we study situations where it is possible for fast sequential learning to occur.
arXiv Detail & Related papers (2025-01-17T15:42:42Z) - Multi-intention Inverse Q-learning for Interpretable Behavior Representation [12.135423420992334]
inverse reinforcement learning (IRL) methods have proven instrumental in reconstructing animal's intentions underlying complex behaviors.
We introduce the class of hierarchical inverse Q-learning (HIQL) algorithms.
Applying HIQL to simulated experiments and several real animal behavior datasets, our approach outperforms current benchmarks in behavior prediction.
arXiv Detail & Related papers (2023-11-23T09:27:08Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Generative Adversarial Neuroevolution for Control Behaviour Imitation [3.04585143845864]
We propose to explore whether deep neuroevolution can be used for behaviour imitation on popular simulation environments.
We introduce a simple co-evolutionary adversarial generation framework, and evaluate its capabilities by evolving standard deep recurrent networks.
Across all tasks, we find the final elite actor agents capable of achieving scores as high as those obtained by the pre-trained agents.
arXiv Detail & Related papers (2023-04-03T16:33:22Z) - Abrupt and spontaneous strategy switches emerge in simple regularised
neural networks [8.737068885923348]
We study whether insight-like behaviour can occur in simple artificial neural networks.
Analyses of network architectures and learning dynamics revealed that insight-like behaviour crucially depended on a regularised gating mechanism.
This suggests that insight-like behaviour can arise naturally from gradual learning in simple neural networks.
arXiv Detail & Related papers (2023-02-22T12:48:45Z) - Dynamical Equations With Bottom-up Self-Organizing Properties Learn
Accurate Dynamical Hierarchies Without Any Loss Function [15.122944754472435]
We propose a learning system where patterns are defined within the realm of nonlinear dynamics with positive and negative feedback loops.
Experiments reveal that such a system can map temporal to spatial correlation, enabling hierarchical structures to be learned from sequential data.
arXiv Detail & Related papers (2023-02-04T10:00:14Z) - Towards the Neuroevolution of Low-level Artificial General Intelligence [5.2611228017034435]
We argue that the search for Artificial General Intelligence (AGI) should start from a much lower level than human-level intelligence.
Our hypothesis is that learning occurs through sensory feedback when an agent acts in an environment.
We evaluate a method to evolve a biologically-inspired artificial neural network that learns from environment reactions.
arXiv Detail & Related papers (2022-07-27T15:30:50Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
imitation learning from a small amount of expert data can be challenging in high-dimensional environments with complex dynamics.
Behavioral cloning is a simple method that is widely used due to its simplicity of implementation and stable convergence.
We introduce a method for dynamics-aware IL which avoids adversarial training by learning a single Q-function.
arXiv Detail & Related papers (2021-06-23T03:43:10Z) - Thinking Deeply with Recurrence: Generalizing from Easy to Hard
Sequential Reasoning Problems [51.132938969015825]
We observe that recurrent networks have the uncanny ability to closely emulate the behavior of non-recurrent deep models.
We show that recurrent networks that are trained to solve simple mazes with few recurrent steps can indeed solve much more complex problems simply by performing additional recurrences during inference.
arXiv Detail & Related papers (2021-02-22T14:09:20Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Bridging the Imitation Gap by Adaptive Insubordination [88.35564081175642]
We show that when the teaching agent makes decisions with access to privileged information, this information is marginalized during imitation learning.
We propose 'Adaptive Insubordination' (ADVISOR) to address this gap.
ADVISOR dynamically weights imitation and reward-based reinforcement learning losses during training, enabling on-the-fly switching between imitation and exploration.
arXiv Detail & Related papers (2020-07-23T17:59:57Z) - Meta-Learning through Hebbian Plasticity in Random Networks [12.433600693422235]
Lifelong learning and adaptability are two defining aspects of biological agents.
Inspired by this biological mechanism, we propose a search method that only searches for synapse-specific Hebbian learning rules.
We find that starting from completely random weights, the discovered Hebbian rules enable an agent to navigate a dynamical 2D-pixel environment.
arXiv Detail & Related papers (2020-07-06T14:32:31Z) - Towards Efficient Processing and Learning with Spikes: New Approaches
for Multi-Spike Learning [59.249322621035056]
We propose two new multi-spike learning rules which demonstrate better performance over other baselines on various tasks.
In the feature detection task, we re-examine the ability of unsupervised STDP with its limitations being presented.
Our proposed learning rules can reliably solve the task over a wide range of conditions without specific constraints being applied.
arXiv Detail & Related papers (2020-05-02T06:41:20Z) - Uncertainty-based Modulation for Lifelong Learning [1.3334365645271111]
We present an algorithm inspired by neuromodulatory mechanisms in the human brain that integrates and expands upon Stephen Grossberg's Adaptive Resonance Theory proposals.
Specifically, it builds on the concept of uncertainty, and employs a series of neuromodulatory mechanisms to enable continuous learning.
We demonstrate the critical role of developing these systems in a closed-loop manner where the environment and the agent's behaviors constrain and guide the learning process.
arXiv Detail & Related papers (2020-01-27T14:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.