論文の概要: OpenDebateEvidence: A Massive-Scale Argument Mining and Summarization Dataset
- arxiv url: http://arxiv.org/abs/2406.14657v3
- Date: Thu, 31 Oct 2024 03:41:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 23:41:18.121982
- Title: OpenDebateEvidence: A Massive-Scale Argument Mining and Summarization Dataset
- Title(参考訳): OpenDebateEvidence: 大規模Argument MiningとSummarizationデータセット
- Authors: Allen Roush, Yusuf Shabazz, Arvind Balaji, Peter Zhang, Stefano Mezza, Markus Zhang, Sanjay Basu, Sriram Vishwanath, Mehdi Fatemi, Ravid Shwartz-Ziv,
- Abstract要約: OpenDebateEvidenceは、American Debate Competitiveコミュニティから派生した、議論のマイニングと要約のための包括的なデータセットである。
このデータセットには、350万以上のドキュメントと豊富なメタデータが含まれており、議論を巻き起こした最も広範な証拠の1つである。
- 参考スコア(独自算出の注目度): 10.385189302526246
- License:
- Abstract: We introduce OpenDebateEvidence, a comprehensive dataset for argument mining and summarization sourced from the American Competitive Debate community. This dataset includes over 3.5 million documents with rich metadata, making it one of the most extensive collections of debate evidence. OpenDebateEvidence captures the complexity of arguments in high school and college debates, providing valuable resources for training and evaluation. Our extensive experiments demonstrate the efficacy of fine-tuning state-of-the-art large language models for argumentative abstractive summarization across various methods, models, and datasets. By providing this comprehensive resource, we aim to advance computational argumentation and support practical applications for debaters, educators, and researchers. OpenDebateEvidence is publicly available to support further research and innovation in computational argumentation. Access it here: https://huggingface.co/datasets/Yusuf5/OpenCaselist
- Abstract(参考訳): 我々は,アメリカン・コンペティティブ・ディベート・コミュニティから派生した議論マイニングと要約のための包括的データセットであるOpenDebateEvidenceを紹介する。
このデータセットには、350万以上のドキュメントと豊富なメタデータが含まれており、議論を巻き起こした最も広範な証拠の1つである。
OpenDebateEvidenceは、高校や大学の議論における議論の複雑さを捉え、トレーニングと評価のための貴重なリソースを提供する。
我々は,様々な手法,モデル,データセットをまたいだ議論的抽象的要約のための,最先端の大規模言語モデルの有効性を実証した。
この包括的リソースを提供することで、計算議論を進展させ、議論者、教育者、研究者の実践的応用を支援することを目指している。
OpenDebateEvidenceは、計算議論におけるさらなる研究と革新をサポートするために公開されている。
https://huggingface.co/datasets/Yusuf5/OpenCaselist
関連論文リスト
- Debatrix: Multi-dimensional Debate Judge with Iterative Chronological Analysis Based on LLM [51.43102092480804]
Debatrixは、Large Language Models (LLMs)に基づく自動ディスカッションジャッジである。
実世界の議論シナリオに合わせるため、私たちはPanelBenchベンチマークを導入し、システムの性能と実際の議論結果を比較した。
以上の結果から,LSMを直接使用して議論評価を行ない,顕著な改善が見られた。
論文 参考訳(メタデータ) (2024-03-12T18:19:47Z) - DebateKG: Automatic Policy Debate Case Creation with Semantic Knowledge
Graphs [0.0]
本稿では,Argumentative Semantic Knowledge Graphs上で,制約付き最短経路トラバーサルを用いて効果的な議論ケースを構築することができることを示す。
53180の新しい例を導入することで、DebateSumを大幅に改善しました。
政策論争の事例を生成する文脈において、どの知識グラフが優れているかを評価するためのユニークな方法を作成する。
論文 参考訳(メタデータ) (2023-07-09T04:19:19Z) - ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
Finance Question Answering [70.6359636116848]
本稿では,対話型質問応答における数値推論の連鎖を研究するために,新しい大規模データセットConvFinQAを提案する。
我々のデータセットは、現実世界の会話において、長距離で複雑な数値推論パスをモデル化する上で大きな課題となる。
論文 参考訳(メタデータ) (2022-10-07T23:48:50Z) - Diversity Over Size: On the Effect of Sample and Topic Sizes for Topic-Dependent Argument Mining Datasets [49.65208986436848]
本研究では,アーギュメント・マイニング・データセットの構成が,少数・ゼロショット設定における影響について検討する。
実験結果から, モデル性能の達成には微調整が必須であるが, 慎重に構成したトレーニングサンプルを用いることで, トレーニングサンプルサイズを最大90%まで下げることで, 最大性能の95%を達成できることがわかった。
論文 参考訳(メタデータ) (2022-05-23T17:14:32Z) - IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument
Mining Tasks [59.457948080207174]
本稿では,一連の議論マイニングタスクに適用可能なIAMという,包括的で大規模なデータセットを提案する。
データセットの70k近い文は、引数特性に基づいて完全に注釈付けされている。
議論準備プロセスに関連する2つの新しい統合された議論マイニングタスクを提案する。(1) 姿勢分類付きクレーム抽出(CESC)と(2) クレーム・エビデンス・ペア抽出(CEPE)である。
論文 参考訳(メタデータ) (2022-03-23T08:07:32Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - Argument Mining Driven Analysis of Peer-Reviews [4.552676857046446]
本稿では,編集者,メタレビュアー,レビュアーの支援を目的としたArgument Miningに基づくアプローチを提案する。
以上の知見の1つは、ピアレビュープロセスで使われる引数が他のドメインの引数とは異なるため、事前学習されたモデルの転送が困難であるということです。
私たちは、注釈付き引数を持つさまざまなコンピュータサイエンス会議の新しいピアレビューデータセットをコミュニティに提供します。
論文 参考訳(メタデータ) (2020-12-10T16:06:21Z) - High Quality Real-Time Structured Debate Generation [0.0]
ハイレベルな構造と文法を図りながら議論を起こすための議論木と経路を定義した。
各議論に関連付けられたメタデータを持つ木構造論争の大規模なコーパスを活用する。
以上の結果から,人間に近い品質で複雑なトピックをリアルタイムに議論する能力を示す。
論文 参考訳(メタデータ) (2020-12-01T01:39:38Z) - DebateSum: A large-scale argument mining and summarization dataset [0.0]
DebateSumは187,386個の独特な証拠と、対応する議論と抽出的な要約で構成されている。
DebateSum上でいくつかの変換器要約モデルを用いて要約性能のベンチマークを行う。
本稿では,全国言語討論会のメンバーによって広く活用されているデータセットの検索エンジンについて述べる。
論文 参考訳(メタデータ) (2020-11-14T10:06:57Z) - Aspect-Controlled Neural Argument Generation [65.91772010586605]
我々は、与えられたトピック、スタンス、アスペクトの文レベル引数を生成するために、きめ細かいレベルで制御できる引数生成のための言語モデルを訓練する。
評価の結果,我々の生成モデルは高品質なアスペクト特異的な議論を生成できることがわかった。
これらの議論は、データ拡張による姿勢検出モデルの性能向上と、逆問題の生成に使用できる。
論文 参考訳(メタデータ) (2020-04-30T20:17:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。