This Looks Better than That: Better Interpretable Models with ProtoPNeXt
- URL: http://arxiv.org/abs/2406.14675v1
- Date: Thu, 20 Jun 2024 18:54:27 GMT
- Title: This Looks Better than That: Better Interpretable Models with ProtoPNeXt
- Authors: Frank Willard, Luke Moffett, Emmanuel Mokel, Jon Donnelly, Stark Guo, Julia Yang, Giyoung Kim, Alina Jade Barnett, Cynthia Rudin,
- Abstract summary: Prototypical-part models are a popular interpretable alternative to black-box deep learning models for computer vision.
We create a new framework for integrating components of prototypical-part models -- ProtoPNeXt.
- Score: 14.28283868577614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prototypical-part models are a popular interpretable alternative to black-box deep learning models for computer vision. However, they are difficult to train, with high sensitivity to hyperparameter tuning, inhibiting their application to new datasets and our understanding of which methods truly improve their performance. To facilitate the careful study of prototypical-part networks (ProtoPNets), we create a new framework for integrating components of prototypical-part models -- ProtoPNeXt. Using ProtoPNeXt, we show that applying Bayesian hyperparameter tuning and an angular prototype similarity metric to the original ProtoPNet is sufficient to produce new state-of-the-art accuracy for prototypical-part models on CUB-200 across multiple backbones. We further deploy this framework to jointly optimize for accuracy and prototype interpretability as measured by metrics included in ProtoPNeXt. Using the same resources, this produces models with substantially superior semantics and changes in accuracy between +1.3% and -1.5%. The code and trained models will be made publicly available upon publication.
Related papers
- Interpretable Image Classification with Adaptive Prototype-based Vision Transformers [37.62530032165594]
We present ProtoViT, a method for interpretable image classification combining deep learning and case-based reasoning.
Our model integrates Vision Transformer (ViT) backbones into prototype based models, while offering spatially deformed prototypes.
Our experiments show that our model can generally achieve higher performance than the existing prototype based models.
arXiv Detail & Related papers (2024-10-28T04:33:28Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Prototypical Fine-tuning: Towards Robust Performance Under Varying Data
Sizes [47.880781811936345]
We propose a novel framework for fine-tuning pretrained language models (LM)
Our prototypical fine-tuning approach can automatically adjust the model capacity according to the number of data points and the model's inherent attributes.
arXiv Detail & Related papers (2022-11-24T14:38:08Z) - Knowledge Distillation to Ensemble Global and Interpretable
Prototype-Based Mammogram Classification Models [20.16068689434846]
We propose BRAIxProtoPNet++, which adds interpretability to a global model by ensembling it with a prototype-based model.
We show that BRAIxProtoPNet++ has higher classification accuracy than SOTA global and prototype-based models.
arXiv Detail & Related papers (2022-09-26T05:04:15Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
We show that combining human prior knowledge with end-to-end learning can improve the robustness of deep neural networks.
Our model combines a part segmentation model with a tiny classifier and is trained end-to-end to simultaneously segment objects into parts.
Our experiments indicate that these models also reduce texture bias and yield better robustness against common corruptions and spurious correlations.
arXiv Detail & Related papers (2022-09-15T15:41:47Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
We propose a novel paradigm of incorporating model-specific prior knowledge into Structurals and using them to train generic (simple) models.
As an implementation, we propose a novel methodology to add prior knowledge by modifying the gradients according to a set of model-specific hyper- parameters.
For a simple model trained with a Repr, we focus on a VGG-style plain model and showcase that such a simple model trained with a Repr, which is referred to as Rep-VGG, performs on par with the recent well-designed models.
arXiv Detail & Related papers (2022-05-30T16:55:59Z) - Rethinking Semantic Segmentation: A Prototype View [126.59244185849838]
We present a nonparametric semantic segmentation model based on non-learnable prototypes.
Our framework yields compelling results over several datasets.
We expect this work will provoke a rethink of the current de facto semantic segmentation model design.
arXiv Detail & Related papers (2022-03-28T21:15:32Z) - ProtoPShare: Prototype Sharing for Interpretable Image Classification
and Similarity Discovery [9.36640530008137]
We introduce ProtoPShare, a self-explained method that incorporates the paradigm of prototypical parts to explain its predictions.
The main novelty of the ProtoPShare is its ability to efficiently share prototypical parts between the classes thanks to our data-dependent merge-pruning.
We verify our findings on two datasets, the CUB-200-2011 and the Stanford Cars.
arXiv Detail & Related papers (2020-11-29T11:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.