TAGLAS: An atlas of text-attributed graph datasets in the era of large graph and language models
- URL: http://arxiv.org/abs/2406.14683v2
- Date: Sat, 19 Oct 2024 18:47:33 GMT
- Title: TAGLAS: An atlas of text-attributed graph datasets in the era of large graph and language models
- Authors: Jiarui Feng, Hao Liu, Lecheng Kong, Mingfang Zhu, Yixin Chen, Muhan Zhang,
- Abstract summary: TAGLAS is an atlas of text-attributed graph (TAG) datasets and benchmarks.
We collect and integrate more than 23 TAG datasets with domains ranging from citation graphs to molecule graphs.
We provide a standardized, efficient, and simplified way to load all datasets and tasks.
- Score: 25.16561980988102
- License:
- Abstract: In this report, we present TAGLAS, an atlas of text-attributed graph (TAG) datasets and benchmarks. TAGs are graphs with node and edge features represented in text, which have recently gained wide applicability in training graph-language or graph foundation models. In TAGLAS, we collect and integrate more than 23 TAG datasets with domains ranging from citation graphs to molecule graphs and tasks from node classification to graph question-answering. Unlike previous graph datasets and benchmarks, all datasets in TAGLAS have a unified node and edge text feature format, which allows a graph model to be simultaneously trained and evaluated on multiple datasets from various domains. Further, we provide a standardized, efficient, and simplified way to load all datasets and tasks. We also provide useful utils like text-to-embedding conversion, and graph-to-text conversion, which can facilitate different evaluation scenarios. Finally, we also provide standard and easy-to-use evaluation utils. The project is open-sourced at https://github.com/JiaruiFeng/TAGLAS and is still under construction. Please expect more datasets/features in the future.
Related papers
- DTGB: A Comprehensive Benchmark for Dynamic Text-Attributed Graphs [28.340416573162898]
Dynamic text-attributed graphs (DyTAGs) are prevalent in various real-world scenarios.
Despite their broad applicability, there is a notable scarcity of benchmark datasets tailored to DyTAGs.
We introduce Dynamic Text-attributed Graph Benchmark (DTGB), a collection of large-scale, time-evolving graphs.
arXiv Detail & Related papers (2024-06-17T20:16:12Z) - GAugLLM: Improving Graph Contrastive Learning for Text-Attributed Graphs with Large Language Models [33.3678293782131]
This work studies self-supervised graph learning for text-attributed graphs (TAGs)
We aim to improve view generation through language supervision.
This is driven by the prevalence of textual attributes in real applications, which complement graph structures with rich semantic information.
arXiv Detail & Related papers (2024-06-17T17:49:19Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Learning Multiplex Representations on Text-Attributed Graphs with One Language Model Encoder [55.24276913049635]
We propose METAG, a new framework for learning Multiplex rEpresentations on Text-Attributed Graphs.
In contrast to existing methods, METAG uses one text encoder to model the shared knowledge across relations.
We conduct experiments on nine downstream tasks in five graphs from both academic and e-commerce domains.
arXiv Detail & Related papers (2023-10-10T14:59:22Z) - One for All: Towards Training One Graph Model for All Classification Tasks [61.656962278497225]
A unified model for various graph tasks remains underexplored, primarily due to the challenges unique to the graph learning domain.
We propose textbfOne for All (OFA), the first general framework that can use a single graph model to address the above challenges.
OFA performs well across different tasks, making it the first general-purpose across-domains classification model on graphs.
arXiv Detail & Related papers (2023-09-29T21:15:26Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
We propose Contrastive Graph-Text pretraining (ConGraT) for jointly learning separate representations of texts and nodes in a text-attributed graph (TAG)
Our method trains a language model (LM) and a graph neural network (GNN) to align their representations in a common latent space using a batch-wise contrastive learning objective inspired by CLIP.
Experiments demonstrate that ConGraT outperforms baselines on various downstream tasks, including node and text category classification, link prediction, and language modeling.
arXiv Detail & Related papers (2023-05-23T17:53:30Z) - Scene Graph Modification as Incremental Structure Expanding [61.84291817776118]
We focus on scene graph modification (SGM), where the system is required to learn how to update an existing scene graph based on a natural language query.
We frame SGM as a graph expansion task by introducing the incremental structure expanding (ISE)
We construct a challenging dataset that contains more complicated queries and larger scene graphs than existing datasets.
arXiv Detail & Related papers (2022-09-15T16:26:14Z) - WikiGraphs: A Wikipedia Text - Knowledge Graph Paired Dataset [37.22405455503238]
Existing graph-text paired datasets typically contain small graphs and short text (1 or few sentences)
Our new dataset WikiGraphs is collected by pairing each Wikipedia article with a subgraph from the Freebase knowledge graph.
Both the graphs and the text data are of significantly larger scale compared to prior graph-text paired datasets.
arXiv Detail & Related papers (2021-07-20T15:18:30Z) - Learning on Attribute-Missing Graphs [66.76561524848304]
There is a graph where attributes of only partial nodes could be available and those of the others might be entirely missing.
Existing graph learning methods including the popular GNN cannot provide satisfied learning performance.
We develop a novel distribution matching based GNN called structure-attribute transformer (SAT) for attribute-missing graphs.
arXiv Detail & Related papers (2020-11-03T11:09:52Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
We propose a novel Context-Aware Graph (CAG) neural network.
Each node in the graph corresponds to a joint semantic feature, including both object-based (visual) and history-related (textual) context representations.
arXiv Detail & Related papers (2020-04-05T13:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.