DTGB: A Comprehensive Benchmark for Dynamic Text-Attributed Graphs
- URL: http://arxiv.org/abs/2406.12072v3
- Date: Mon, 04 Nov 2024 18:38:35 GMT
- Title: DTGB: A Comprehensive Benchmark for Dynamic Text-Attributed Graphs
- Authors: Jiasheng Zhang, Jialin Chen, Menglin Yang, Aosong Feng, Shuang Liang, Jie Shao, Rex Ying,
- Abstract summary: Dynamic text-attributed graphs (DyTAGs) are prevalent in various real-world scenarios.
Despite their broad applicability, there is a notable scarcity of benchmark datasets tailored to DyTAGs.
We introduce Dynamic Text-attributed Graph Benchmark (DTGB), a collection of large-scale, time-evolving graphs.
- Score: 28.340416573162898
- License:
- Abstract: Dynamic text-attributed graphs (DyTAGs) are prevalent in various real-world scenarios, where each node and edge are associated with text descriptions, and both the graph structure and text descriptions evolve over time. Despite their broad applicability, there is a notable scarcity of benchmark datasets tailored to DyTAGs, which hinders the potential advancement in many research fields. To address this gap, we introduce Dynamic Text-attributed Graph Benchmark (DTGB), a collection of large-scale, time-evolving graphs from diverse domains, with nodes and edges enriched by dynamically changing text attributes and categories. To facilitate the use of DTGB, we design standardized evaluation procedures based on four real-world use cases: future link prediction, destination node retrieval, edge classification, and textual relation generation. These tasks require models to understand both dynamic graph structures and natural language, highlighting the unique challenges posed by DyTAGs. Moreover, we conduct extensive benchmark experiments on DTGB, evaluating 7 popular dynamic graph learning algorithms and their variants of adapting to text attributes with LLM embeddings, along with 6 powerful large language models (LLMs). Our results show the limitations of existing models in handling DyTAGs. Our analysis also demonstrates the utility of DTGB in investigating the incorporation of structural and textual dynamics. The proposed DTGB fosters research on DyTAGs and their broad applications. It offers a comprehensive benchmark for evaluating and advancing models to handle the interplay between dynamic graph structures and natural language. The dataset and source code are available at https://github.com/zjs123/DTGB.
Related papers
- TAGLAS: An atlas of text-attributed graph datasets in the era of large graph and language models [25.16561980988102]
TAGLAS is an atlas of text-attributed graph (TAG) datasets and benchmarks.
We collect and integrate more than 23 TAG datasets with domains ranging from citation graphs to molecule graphs.
We provide a standardized, efficient, and simplified way to load all datasets and tasks.
arXiv Detail & Related papers (2024-06-20T19:11:35Z) - UniGLM: Training One Unified Language Model for Text-Attributed Graphs [31.464021556351685]
Unified Graph Language Model (UniGLM) is a graph embedding model that generalizes well to both in-domain and cross-domain TAGs.
UniGLM includes an adaptive positive sample selection technique for identifying structurally similar nodes and a lazy contrastive module that is devised to accelerate training.
arXiv Detail & Related papers (2024-06-17T19:45:21Z) - GAugLLM: Improving Graph Contrastive Learning for Text-Attributed Graphs with Large Language Models [33.3678293782131]
This work studies self-supervised graph learning for text-attributed graphs (TAGs)
We aim to improve view generation through language supervision.
This is driven by the prevalence of textual attributes in real applications, which complement graph structures with rich semantic information.
arXiv Detail & Related papers (2024-06-17T17:49:19Z) - TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs [14.437863803271808]
Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections.
Existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes.
To address this gap, we introduce Textual-Edge Graphs datasets featuring rich textual descriptions on nodes and edges.
arXiv Detail & Related papers (2024-06-14T06:22:47Z) - TAGA: Text-Attributed Graph Self-Supervised Learning by Synergizing Graph and Text Mutual Transformations [15.873944819608434]
Text-Attributed Graphs (TAGs) enhance graph structures with natural language descriptions.
This paper introduces a new self-supervised learning framework, Text-And-Graph Multi-View Alignment (TAGA), which integrates TAGs' structural and semantic dimensions.
Our framework demonstrates strong performance in zero-shot and few-shot scenarios across eight real-world datasets.
arXiv Detail & Related papers (2024-05-27T03:40:16Z) - Learning Multiplex Representations on Text-Attributed Graphs with One Language Model Encoder [55.24276913049635]
We propose METAG, a new framework for learning Multiplex rEpresentations on Text-Attributed Graphs.
In contrast to existing methods, METAG uses one text encoder to model the shared knowledge across relations.
We conduct experiments on nine downstream tasks in five graphs from both academic and e-commerce domains.
arXiv Detail & Related papers (2023-10-10T14:59:22Z) - Temporal Graph Benchmark for Machine Learning on Temporal Graphs [54.52243310226456]
Temporal Graph Benchmark (TGB) is a collection of challenging and diverse benchmark datasets.
We benchmark each dataset and find that the performance of common models can vary drastically across datasets.
TGB provides an automated machine learning pipeline for reproducible and accessible temporal graph research.
arXiv Detail & Related papers (2023-07-03T13:58:20Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - Scene Graph Modification as Incremental Structure Expanding [61.84291817776118]
We focus on scene graph modification (SGM), where the system is required to learn how to update an existing scene graph based on a natural language query.
We frame SGM as a graph expansion task by introducing the incremental structure expanding (ISE)
We construct a challenging dataset that contains more complicated queries and larger scene graphs than existing datasets.
arXiv Detail & Related papers (2022-09-15T16:26:14Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Deep Graph Matching and Searching for Semantic Code Retrieval [76.51445515611469]
We propose an end-to-end deep graph matching and searching model based on graph neural networks.
We first represent both natural language query texts and programming language code snippets with the unified graph-structured data.
In particular, DGMS not only captures more structural information for individual query texts or code snippets but also learns the fine-grained similarity between them.
arXiv Detail & Related papers (2020-10-24T14:16:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.