論文の概要: A Contrastive Learning Approach to Mitigate Bias in Speech Models
- arxiv url: http://arxiv.org/abs/2406.14686v1
- Date: Thu, 20 Jun 2024 19:20:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 18:08:45.587341
- Title: A Contrastive Learning Approach to Mitigate Bias in Speech Models
- Title(参考訳): 音声モデルにおけるバイアス軽減のためのコントラスト学習手法
- Authors: Alkis Koudounas, Flavio Giobergia, Eliana Pastor, Elena Baralis,
- Abstract要約: 対照的な損失に対して異なるスコープに焦点を合わせることでモデルをガイドする3段階の学習手法を採用している。
2つの音声言語理解データセットと2つの言語を用いた実験は、我々の手法が内部サブグループ表現を改善することを示す。
- 参考スコア(独自算出の注目度): 13.192011475857234
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Speech models may be affected by performance imbalance in different population subgroups, raising concerns about fair treatment across these groups. Prior attempts to mitigate unfairness either focus on user-defined subgroups, potentially overlooking other affected subgroups, or do not explicitly improve the internal representation at the subgroup level. This paper proposes the first adoption of contrastive learning to mitigate speech model bias in underperforming subgroups. We employ a three-level learning technique that guides the model in focusing on different scopes for the contrastive loss, i.e., task, subgroup, and the errors within subgroups. The experiments on two spoken language understanding datasets and two languages demonstrate that our approach improves internal subgroup representations, thus reducing model bias and enhancing performance.
- Abstract(参考訳): 音声モデルは、異なる集団サブグループにおけるパフォーマンスの不均衡の影響を受け、これらのグループ全体で公平な治療に関する懸念を提起する。
従来、不公平さを軽減しようとする試みは、ユーザ定義サブグループに焦点を当てたり、他の影響を受けるサブグループを見過ごしたり、あるいはサブグループレベルで内部表現を明示的に改善することはなかった。
本稿では、低パフォーマンスサブグループにおける音声モデルのバイアスを軽減するために、コントラスト学習を初めて導入することを提案する。
我々は,タスク,サブグループ,サブグループ内のエラーなど,対照的な損失に対する異なるスコープに着目してモデルを導く3段階の学習手法を採用している。
2つの音声言語理解データセットと2つの言語を用いた実験は、我々の手法が内部サブグループ表現を改善し、モデルバイアスを低減し、性能を向上させることを示す。
関連論文リスト
- The Group Robustness is in the Details: Revisiting Finetuning under Spurious Correlations [8.844894807922902]
現代の機械学習モデルは、素早い相関に過度に依存する傾向がある。
本稿では,最短群精度における微調整モデルの意外かつニュアンスな挙動を同定する。
以上の結果より,群強靭性を有する現代ファインチュードモデルの微妙な相互作用が以前よりも顕著に示された。
論文 参考訳(メタデータ) (2024-07-19T00:34:03Z) - Fairness Aware Counterfactuals for Subgroups [8.593488857185678]
本稿では,サブグループのフェアネスを監査するフレームワークであるFACTS(Fairness Aware Counterfactuals for Subgroups)を紹介する。
我々は、特定のサブグループにおける個人の困難さの異なる側面を定式化し、談話を達成することを目的としている。
我々は、言論を達成するためのコストに対して、完全に不可避ではないが頑健な部分群フェアネスの概念を導入する。
論文 参考訳(メタデータ) (2023-06-26T18:03:56Z) - Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models [56.88106830869487]
我々は、(潜在的に非同変な)事前訓練されたモデルを群同変モデルに変換する新しい微調整法である、同調を導入する。
本稿では、画像分類、合成言語における一般化、自然言語生成における公平性という3つの異なるタスクに対する等価チューニングの応用について述べる。
論文 参考訳(メタデータ) (2022-10-13T08:45:23Z) - Outlier-Robust Group Inference via Gradient Space Clustering [50.87474101594732]
既存のメソッドは、最悪のグループのパフォーマンスを改善することができるが、それらは、しばしば高価で入手できないグループアノテーションを必要とする。
モデルパラメータの勾配の空間にデータをクラスタリングすることで,アウトレーヤの存在下でグループアノテーションを学習する問題に対処する。
そこで我々は,DBSCANのような標準クラスタリング手法に適合するように,マイノリティグループや外れ値に関する情報を保存しながら,勾配空間内のデータがより単純な構造を持つことを示す。
論文 参考訳(メタデータ) (2022-10-13T06:04:43Z) - A Multi-level Supervised Contrastive Learning Framework for Low-Resource
Natural Language Inference [54.678516076366506]
自然言語推論(NLI)は、自然言語理解において、ますます重要な課題である。
本稿では,低リソースな自然言語推論のためのマルチSCLという,マルチレベルの教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-31T05:54:18Z) - Addressing Missing Sources with Adversarial Support-Matching [8.53946780558779]
そこで本研究では,データ内の2段階階層の2段階に,データの欠如が関係しているシナリオについて検討する。
アルゴリズム的公正性から保護された群の概念に触発され、この第2階層によって彫られた分割を「部分群」と呼ぶ。
私たちは、サブグループに不変な表現を学ぶために、"deployment set"と呼ばれる追加で多様だがラベルなしのデータセットを使用します。
論文 参考訳(メタデータ) (2022-03-24T16:19:19Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
本研究では,異なるグループに属する個人を1つのグループにマッピングできる公正表現学習アルゴリズムを開発した。
提案手法は,他の公正表現学習アルゴリズムと競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T10:49:49Z) - LOGAN: Local Group Bias Detection by Clustering [86.38331353310114]
コーパスレベルでバイアスを評価することは、モデルにバイアスがどのように埋め込まれているかを理解するのに十分ではない、と我々は主張する。
クラスタリングに基づく新しいバイアス検出手法であるLOGANを提案する。
毒性分類および対象分類タスクの実験は、LOGANが局所領域のバイアスを特定することを示している。
論文 参考訳(メタデータ) (2020-10-06T16:42:51Z) - Model Patching: Closing the Subgroup Performance Gap with Data
Augmentation [50.35010342284508]
機械学習モデルの堅牢性を改善するためのフレームワークであるモデルパッチを導入する。
モデルパッチは、サブグループの違いに対してモデルを不変にすることを奨励し、サブグループによって共有されるクラス情報にフォーカスする。
CAMELは,(1)CycleGANを用いてクラス内およびサブグループ間拡張を学習し,(2)理論上動機付けられた整合性正規化器を用いてサブグループ性能のバランスをとる。
CAMELの有効性を3つのベンチマークデータセットで示し、最高のベースラインに対して、ロバストなエラーを最大33%削減した。
論文 参考訳(メタデータ) (2020-08-15T20:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。