Preferential Multi-Objective Bayesian Optimization
- URL: http://arxiv.org/abs/2406.14699v1
- Date: Thu, 20 Jun 2024 19:44:37 GMT
- Title: Preferential Multi-Objective Bayesian Optimization
- Authors: Raul Astudillo, Kejun Li, Maegan Tucker, Chu Xin Cheng, Aaron D. Ames, Yisong Yue,
- Abstract summary: We present dueling scalarized Thompson sampling (DSTS), a generalization of the popular dueling Thompson algorithm, which may be of interest beyond the PBO setting.
We evaluate DSTS across four synthetic test functions and two simulated exoskeleton personalization and driving policy design tasks.
As a direct consequence, this result provides, to our knowledge, the first convergence guarantee for dueling Thompson sampling in the PBO setting.
- Score: 46.265078006749576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Preferential Bayesian optimization (PBO) is a framework for optimizing a decision-maker's latent preferences over available design choices. While preferences often involve multiple conflicting objectives, existing work in PBO assumes that preferences can be encoded by a single objective function. For example, in robotic assistive devices, technicians often attempt to maximize user comfort while simultaneously minimizing mechanical energy consumption for longer battery life. Similarly, in autonomous driving policy design, decision-makers wish to understand the trade-offs between multiple safety and performance attributes before committing to a policy. To address this gap, we propose the first framework for PBO with multiple objectives. Within this framework, we present dueling scalarized Thompson sampling (DSTS), a multi-objective generalization of the popular dueling Thompson algorithm, which may be of interest beyond the PBO setting. We evaluate DSTS across four synthetic test functions and two simulated exoskeleton personalization and driving policy design tasks, showing that it outperforms several benchmarks. Finally, we prove that DSTS is asymptotically consistent. As a direct consequence, this result provides, to our knowledge, the first convergence guarantee for dueling Thompson sampling in the PBO setting.
Related papers
- Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
Predictive optimization is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising.
We develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for advertising.
Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO.
arXiv Detail & Related papers (2023-11-13T13:19:34Z) - Optimal Cost-Preference Trade-off Planning with Multiple Temporal Tasks [3.655021726150368]
We introduce a novel notion of preference that provides a generalized framework to express preferences over individual tasks as well as their relations.
We perform an optimal trade-off (Pareto) analysis between behaviors that adhere to the user's preference and the ones that are resource optimal.
arXiv Detail & Related papers (2023-06-22T21:56:49Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - Opportunistic Qualitative Planning in Stochastic Systems with Incomplete
Preferences over Reachability Objectives [24.11353445650682]
Preferences play a key role in determining what goals/constraints to satisfy when not all constraints can be satisfied simultaneously.
We present an algorithm to synthesize the SPI and SASI strategies that induce multiple sequential improvements.
arXiv Detail & Related papers (2022-10-04T19:53:08Z) - Probabilistic Planning with Partially Ordered Preferences over Temporal
Goals [22.77805882908817]
We study planning in Markov decision processes (MDPs) with preferences over temporally extended goals.
We introduce a variant of deterministic finite automaton, referred to as a preference DFA, for specifying the user's preferences over temporally extended goals.
We prove that a weak-stochastic nondominated policy given the preference specification is optimal in the constructed multi-objective MDP.
arXiv Detail & Related papers (2022-09-25T17:13:24Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - Tuning Particle Accelerators with Safety Constraints using Bayesian
Optimization [73.94660141019764]
tuning machine parameters of particle accelerators is a repetitive and time-consuming task.
We propose and evaluate a step size-limited variant of safe Bayesian optimization.
arXiv Detail & Related papers (2022-03-26T02:21:03Z) - Bayesian Optimization over Permutation Spaces [30.650753803587794]
We propose and evaluate two algorithms for BO over Permutation Spaces (BOPS)
We theoretically analyze the performance of BOPS-T to show that their regret grows sub-linearly.
Our experiments on multiple synthetic and real-world benchmarks show that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algorithm for spaces.
arXiv Detail & Related papers (2021-12-02T08:20:50Z) - Bayesian decision-making under misspecified priors with applications to
meta-learning [64.38020203019013]
Thompson sampling and other sequential decision-making algorithms are popular approaches to tackle explore/exploit trade-offs in contextual bandits.
We show that performance degrades gracefully with misspecified priors.
arXiv Detail & Related papers (2021-07-03T23:17:26Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.