BOtied: Multi-objective Bayesian optimization with tied multivariate ranks
- URL: http://arxiv.org/abs/2306.00344v2
- Date: Fri, 7 Jun 2024 13:53:49 GMT
- Title: BOtied: Multi-objective Bayesian optimization with tied multivariate ranks
- Authors: Ji Won Park, NataĊĦa Tagasovska, Michael Maser, Stephen Ra, Kyunghyun Cho,
- Abstract summary: In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
- Score: 33.414682601242006
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many scientific and industrial applications require the joint optimization of multiple, potentially competing objectives. Multi-objective Bayesian optimization (MOBO) is a sample-efficient framework for identifying Pareto-optimal solutions. At the heart of MOBO is the acquisition function, which determines the next candidate to evaluate by navigating the best compromises among the objectives. In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function (CDF). Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied. BOtied inherits desirable invariance properties of the CDF, and an efficient implementation with copulas allows it to scale to many objectives. Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions while being computationally efficient for many objectives.
Related papers
- Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Sample-efficient Multi-objective Molecular Optimization with GFlowNets [5.030493242666028]
We propose a multi-objective Bayesian optimization (MOBO) algorithm leveraging the hypernetwork-based GFlowNets (HN-GFN)
Using a single preference-conditioned hypernetwork, HN-GFN learns to explore various trade-offs between objectives.
Experiments in various real-world settings demonstrate that our framework predominantly outperforms existing methods in terms of candidate quality and sample efficiency.
arXiv Detail & Related papers (2023-02-08T13:30:28Z) - Multi-Objective GFlowNets [59.16787189214784]
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization.
In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives.
We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse optimal solutions, based on GFlowNets.
arXiv Detail & Related papers (2022-10-23T16:15:36Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
We propose a novel information-theoretic acquisition function for BO called Joint Entropy Search.
We showcase the effectiveness of this new approach on a range of synthetic and real-world problems in terms of the hypervolume and its weighted variants.
arXiv Detail & Related papers (2022-10-06T13:19:08Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations.
Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms.
arXiv Detail & Related papers (2020-11-02T06:59:04Z) - Multi-Fidelity Bayesian Optimization via Deep Neural Networks [19.699020509495437]
In many applications, the objective function can be evaluated at multiple fidelities to enable a trade-off between the cost and accuracy.
We propose Deep Neural Network Multi-Fidelity Bayesian Optimization (DNN-MFBO) that can flexibly capture all kinds of complicated relationships between the fidelities.
We show the advantages of our method in both synthetic benchmark datasets and real-world applications in engineering design.
arXiv Detail & Related papers (2020-07-06T23:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.