Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics
- URL: http://arxiv.org/abs/2406.14703v2
- Date: Wed, 23 Oct 2024 14:01:14 GMT
- Title: Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics
- Authors: Seungbeen Lee, Seungwon Lim, Seungju Han, Giyeong Oh, Hyungjoo Chae, Jiwan Chung, Minju Kim, Beong-woo Kwak, Yeonsoo Lee, Dongha Lee, Jinyoung Yeo, Youngjae Yu,
- Abstract summary: Large Language Models (LLMs) have led to their adaptation in various domains as conversational agents.
We introduce TRAIT, a new benchmark consisting of 8K multi-choice questions designed to assess the personality of LLMs.
LLMs exhibit distinct and consistent personality, which is highly influenced by their training data.
- Score: 29.325576963215163
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have led to their adaptation in various domains as conversational agents. We wonder: can personality tests be applied to these agents to analyze their behavior, similar to humans? We introduce TRAIT, a new benchmark consisting of 8K multi-choice questions designed to assess the personality of LLMs. TRAIT is built on two psychometrically validated small human questionnaires, Big Five Inventory (BFI) and Short Dark Triad (SD-3), enhanced with the ATOMIC-10X knowledge graph to a variety of real-world scenarios. TRAIT also outperforms existing personality tests for LLMs in terms of reliability and validity, achieving the highest scores across four key metrics: Content Validity, Internal Validity, Refusal Rate, and Reliability. Using TRAIT, we reveal two notable insights into personalities of LLMs: 1) LLMs exhibit distinct and consistent personality, which is highly influenced by their training data (e.g., data used for alignment tuning), and 2) current prompting techniques have limited effectiveness in eliciting certain traits, such as high psychopathy or low conscientiousness, suggesting the need for further research in this direction.
Related papers
- Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
Large language models (LLMs) have become increasingly proficient at simulating various personality traits.
We present a neuron-based approach for personality trait induction in LLMs.
arXiv Detail & Related papers (2024-10-16T07:47:45Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - Identifying Multiple Personalities in Large Language Models with
External Evaluation [6.657168333238573]
Large Language Models (LLMs) are integrated with human daily applications rapidly.
Many recent studies quantify LLMs' personalities using self-assessment tests that are created for humans.
Yet many critiques question the applicability and reliability of these self-assessment tests when applied to LLMs.
arXiv Detail & Related papers (2024-02-22T18:57:20Z) - Illuminating the Black Box: A Psychometric Investigation into the
Multifaceted Nature of Large Language Models [3.692410936160711]
This study explores the idea of AI Personality or AInality suggesting that Large Language Models (LLMs) exhibit patterns similar to human personalities.
Using projective tests, we uncover hidden aspects of LLM personalities that are not easily accessible through direct questioning.
Our machine learning analysis revealed that LLMs exhibit distinct AInality traits and manifest diverse personality types, demonstrating dynamic shifts in response to external instructions.
arXiv Detail & Related papers (2023-12-21T04:57:21Z) - Challenging the Validity of Personality Tests for Large Language Models [2.9123921488295768]
Large language models (LLMs) behave increasingly human-like in text-based interactions.
LLMs' responses to personality tests systematically deviate from human responses.
arXiv Detail & Related papers (2023-11-09T11:54:01Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Self-Assessment Tests are Unreliable Measures of LLM Personality [2.887477629420772]
We analyze the reliability of personality scores obtained from self-assessment personality tests using two simple experiments.
We find that all three prompts lead to very different personality scores, a difference that is statistically significant for all traits in a large majority of scenarios.
Since most of the self-assessment tests exist in the form of multiple choice question (MCQ) questions, we argue that the scores should also be robust to the order in which the options are presented.
arXiv Detail & Related papers (2023-09-15T05:19:39Z) - Do LLMs Possess a Personality? Making the MBTI Test an Amazing
Evaluation for Large Language Models [2.918940961856197]
We aim to investigate the feasibility of using the Myers-Briggs Type Indicator (MBTI), a widespread human personality assessment tool, as an evaluation metric for large language models (LLMs)
Specifically, experiments will be conducted to explore: 1) the personality types of different LLMs, 2) the possibility of changing the personality types by prompt engineering, and 3) How does the training dataset affect the model's personality.
arXiv Detail & Related papers (2023-07-30T09:34:35Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
This study aims to determine the reliability of applying personality assessments to Large Language Models.
Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory.
arXiv Detail & Related papers (2023-05-31T15:03:28Z) - Can ChatGPT Assess Human Personalities? A General Evaluation Framework [70.90142717649785]
Large Language Models (LLMs) have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored.
This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers Briggs Type Indicator (MBTI) tests.
arXiv Detail & Related papers (2023-03-01T06:16:14Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
We draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors.
To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors.
MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories.
We devise a Personality Prompting (P2) method to induce LLMs with specific personalities in a controllable way.
arXiv Detail & Related papers (2022-05-20T07:32:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.