Neuron-based Personality Trait Induction in Large Language Models
- URL: http://arxiv.org/abs/2410.12327v1
- Date: Wed, 16 Oct 2024 07:47:45 GMT
- Title: Neuron-based Personality Trait Induction in Large Language Models
- Authors: Jia Deng, Tianyi Tang, Yanbin Yin, Wenhao Yang, Wayne Xin Zhao, Ji-Rong Wen,
- Abstract summary: Large language models (LLMs) have become increasingly proficient at simulating various personality traits.
We present a neuron-based approach for personality trait induction in LLMs.
- Score: 115.08894603023712
- License:
- Abstract: Large language models (LLMs) have become increasingly proficient at simulating various personality traits, an important capability for supporting related applications (e.g., role-playing). To further improve this capacity, in this paper, we present a neuron-based approach for personality trait induction in LLMs, with three major technical contributions. First, we construct PersonalityBench, a large-scale dataset for identifying and evaluating personality traits in LLMs. This dataset is grounded in the Big Five personality traits from psychology and is designed to assess the generative capabilities of LLMs towards specific personality traits. Second, by leveraging PersonalityBench, we propose an efficient method for identifying personality-related neurons within LLMs by examining the opposite aspects of a given trait. Third, we develop a simple yet effective induction method that manipulates the values of these identified personality-related neurons. This method enables fine-grained control over the traits exhibited by LLMs without training and modifying model parameters. Extensive experiments validate the efficacy of our neuron identification and trait induction methods. Notably, our approach achieves comparable performance as fine-tuned models, offering a more efficient and flexible solution for personality trait induction in LLMs. We provide access to all the mentioned resources at https://github.com/RUCAIBox/NPTI.
Related papers
- BIG5-CHAT: Shaping LLM Personalities Through Training on Human-Grounded Data [28.900987544062257]
We introduce BIG5-CHAT, a large-scale dataset containing 100,000 dialogues designed to ground models in how humans express their personality in text.
Our methods prompting outperform on personality assessments such as BFI and IPIP-NEO, with trait correlations more closely matching human data.
Our experiments reveal that models trained to exhibit higher conscientiousness, higher agreeableness, lower extraversion, and lower neuroticism display better performance on reasoning tasks.
arXiv Detail & Related papers (2024-10-21T20:32:27Z) - Personality Alignment of Large Language Models [26.071445846818914]
Current methods for aligning large language models (LLMs) typically aim to reflect general human values and behaviors.
We introduce the concept of Personality Alignment.
This approach tailors LLMs' responses and decisions to match the specific preferences of individual users or closely related groups.
arXiv Detail & Related papers (2024-08-21T17:09:00Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - Machine Mindset: An MBTI Exploration of Large Language Models [28.2342069623478]
We present a novel approach for integrating Myers-Briggs Type Indicator (MBTI) personality traits into large language models (LLMs)
Our method, "Machine Mindset," involves a two-phase fine-tuning and Direct Preference Optimization (DPO) to embed MBTI traits into LLMs.
arXiv Detail & Related papers (2023-12-20T12:59:31Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Artificial Neuropsychology: Are Large Language Models Developing
Executive Functions? [0.0]
We evaluate the planning function and working memory of GPT using the popular Towers of Hanoi method.
Preliminary results show that LLMs generates near-optimal solutions in Towers of Hanoi related tasks.
These abilities are quite limited and worse than well-trained humans when the tasks are not known.
arXiv Detail & Related papers (2023-05-06T20:53:22Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
We draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors.
To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors.
MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories.
We devise a Personality Prompting (P2) method to induce LLMs with specific personalities in a controllable way.
arXiv Detail & Related papers (2022-05-20T07:32:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.