論文の概要: Factual Dialogue Summarization via Learning from Large Language Models
- arxiv url: http://arxiv.org/abs/2406.14709v1
- Date: Thu, 20 Jun 2024 20:03:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 17:49:36.170984
- Title: Factual Dialogue Summarization via Learning from Large Language Models
- Title(参考訳): 大規模言語モデルからの学習によるFactual Dialogue Summarization
- Authors: Rongxin Zhu, Jey Han Lau, Jianzhong Qi,
- Abstract要約: 大規模言語モデル(LLM)に基づく自動テキスト要約モデルは、より現実的に一貫した要約を生成する。
ゼロショット学習を用いて、LLMから記号的知識を抽出し、事実整合性(正)および矛盾性(負)の要約を生成する。
各種自動評価指標で確認したように,コヒーレンス,フラレンシ,関連性を保ちながら,より優れた事実整合性を実現する。
- 参考スコア(独自算出の注目度): 35.63037083806503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Factual consistency is an important quality in dialogue summarization. Large language model (LLM)-based automatic text summarization models generate more factually consistent summaries compared to those by smaller pretrained language models, but they face deployment challenges in real-world applications due to privacy or resource constraints. In this paper, we investigate the use of symbolic knowledge distillation to improve the factual consistency of smaller pretrained models for dialogue summarization. We employ zero-shot learning to extract symbolic knowledge from LLMs, generating both factually consistent (positive) and inconsistent (negative) summaries. We then apply two contrastive learning objectives on these summaries to enhance smaller summarization models. Experiments with BART, PEGASUS, and Flan-T5 indicate that our approach surpasses strong baselines that rely on complex data augmentation strategies. Our approach achieves better factual consistency while maintaining coherence, fluency, and relevance, as confirmed by various automatic evaluation metrics. We also provide access to the data and code to facilitate future research.
- Abstract(参考訳): 事実整合性は対話の要約において重要な品質である。
大規模言語モデル(LLM)に基づく自動テキスト要約モデルは、より小さな事前訓練された言語モデルと比較すると、より現実的に一貫性のある要約を生成するが、プライバシやリソース制約のため、現実のアプリケーションではデプロイ上の課題に直面している。
本稿では,対話要約のためのより小さな事前学習モデルの現実的整合性を改善するために,記号的知識蒸留を用いて検討する。
ゼロショット学習を用いて、LLMから記号的知識を抽出し、事実整合性(正)と矛盾性(負)の両方を生成する。
次に、これらの要約に2つの対照的な学習目標を適用し、より小さな要約モデルを強化する。
BART、PEGASUS、Flan-T5による実験は、我々のアプローチが複雑なデータ拡張戦略に依存する強力なベースラインを超えたことを示している。
各種自動評価指標で確認したように,コヒーレンス,フラレンシ,関連性を保ちながら,より優れた事実整合性を実現する。
また、将来の研究を促進するために、データやコードへのアクセスも提供します。
関連論文リスト
- Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Information-Theoretic Distillation for Reference-less Summarization [67.51150817011617]
本稿では,要約のための情報理論的目的に基づいて,強力な要約器を蒸留する新しい枠組みを提案する。
我々は,教師モデルとしてPythia-2.8Bから出発する。
我々は,ChatGPTと競合する5億8800万のパラメータしか持たないコンパクトだが強力な要約器に到達した。
論文 参考訳(メタデータ) (2024-03-20T17:42:08Z) - Factually Consistent Summarization via Reinforcement Learning with
Textual Entailment Feedback [57.816210168909286]
我々は,この問題を抽象的な要約システムで解くために,テキストエンテーメントモデルの最近の進歩を活用している。
我々は、事実整合性を最適化するために、レファレンスフリーのテキストエンターメント報酬を用いた強化学習を用いる。
自動測定と人的評価の両結果から,提案手法は生成した要約の忠実さ,サリエンス,簡潔さを著しく向上させることが示された。
論文 参考訳(メタデータ) (2023-05-31T21:04:04Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
抽象的な要約は、事前訓練された言語モデルと大規模データセットの可用性のおかげで、近年で新たな関心を集めている。
有望な結果にもかかわらず、現在のモデルはいまだに現実的に矛盾した要約を生み出すことに苦しむ。
事実整合性評価モデルを利用して、多言語要約を改善する。
論文 参考訳(メタデータ) (2022-12-20T19:52:41Z) - Mitigating Data Sparsity for Short Text Topic Modeling by Topic-Semantic
Contrastive Learning [19.7066703371736]
トピック・セマンティック・コントラスト・トピック・モデル(TSCTM)を提案する。
我々のTSCTMは、データ拡張の可用性に関わらず最先端のベースラインを上回り、高品質なトピックやトピックの分布を生成します。
論文 参考訳(メタデータ) (2022-11-23T11:33:43Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - CONFIT: Toward Faithful Dialogue Summarization with
Linguistically-Informed Contrastive Fine-tuning [5.389540975316299]
生成された要約における現実的な矛盾は、抽象的な対話要約の実践的応用を著しく制限する。
本稿では,エラーのタイプを強調し,事実性に対する二項的理解から遠ざかるために,アノテーションデータを用いた事実的エラーのタイプ分析を行う。
本稿では,ConFiTと呼ばれる新しいコントラスト微調整手法により,要約の事実整合性と全体的な品質を改善するためのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T09:08:40Z) - Dialogue Summarization with Supporting Utterance Flow Modeling and Fact
Regularization [58.965859508695225]
本稿では、2つの新しいモジュールを用いた対話要約のためのエンドツーエンドニューラルネットワークを提案する。
サポートされた発話フローモデリングは、前者の発話から後者へのフォーカスを円滑にシフトさせることで、コヒーレントな要約を生成するのに役立つ。
事実の正則化は、モデルトレーニング中に生成された要約は、基礎と真実の要約と実際に一致するように促します。
論文 参考訳(メタデータ) (2021-08-03T03:09:25Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。