論文の概要: Regularized Distribution Matching Distillation for One-step Unpaired Image-to-Image Translation
- arxiv url: http://arxiv.org/abs/2406.14762v1
- Date: Thu, 20 Jun 2024 22:22:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 15:22:05.761187
- Title: Regularized Distribution Matching Distillation for One-step Unpaired Image-to-Image Translation
- Title(参考訳): 1段階不対画像変換のための正規分布マッチング蒸留法
- Authors: Denis Rakitin, Ivan Shchekotov, Dmitry Vetrov,
- Abstract要約: 未ペア画像対画像(I2I)問題に適用可能な正規分布マッチング蒸留法を提案する。
画像データセット間の2次元例とI2Iを含む複数の翻訳タスクに適用した経験的性能を示す。
- 参考スコア(独自算出の注目度): 1.8434042562191815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion distillation methods aim to compress the diffusion models into efficient one-step generators while trying to preserve quality. Among them, Distribution Matching Distillation (DMD) offers a suitable framework for training general-form one-step generators, applicable beyond unconditional generation. In this work, we introduce its modification, called Regularized Distribution Matching Distillation, applicable to unpaired image-to-image (I2I) problems. We demonstrate its empirical performance in application to several translation tasks, including 2D examples and I2I between different image datasets, where it performs on par or better than multi-step diffusion baselines.
- Abstract(参考訳): 拡散蒸留法は, 拡散モデルを効率の良い1段階生成器に圧縮し, 品質を保とうとするものである。
その中でも、DMD(Distributed Matching Distillation)は、非条件生成を越えて適用可能な、汎用的なワンステップジェネレータのトレーニングに適したフレームワークを提供する。
本研究は, 正規化分布マッチング蒸留法 (Regularized Distribution Matching Distillation) と呼ばれる, 未ペア画像対画像 (I2I) 問題に適用可能な修正法を提案する。
画像データセット間の2次元例とI2Iを含む複数の翻訳タスクに適用した経験的性能を示す。
関連論文リスト
- DDIL: Improved Diffusion Distillation With Imitation Learning [57.3467234269487]
拡散モデルは生成モデリング(例:text-to-image)に優れるが、サンプリングには複数の遅延ネットワークパスが必要である。
プログレッシブ蒸留や一貫性蒸留は、パスの数を減らして将来性を示す。
DDILの一貫性は, プログレッシブ蒸留 (PD), 潜在整合モデル (LCM) および分散整合蒸留 (DMD2) のベースラインアルゴリズムにより向上することを示した。
論文 参考訳(メタデータ) (2024-10-15T18:21:47Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
最小品質の損失を最小限に抑えた1ステップ生成モデルに拡散モデルを蒸留する最大可能性に基づく手法を提案する。
本研究では, 蒸留プロセスの安定化を図るため, 再パラメータ化サンプリング手法とノイズキャンセリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-27T05:55:22Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
複雑な多段階拡散モデルを1段階条件付きGAN学生モデルに蒸留する。
E-LatentLPIPSは,拡散モデルの潜在空間で直接動作する知覚的損失である。
我々は, 最先端の1ステップ拡散蒸留モデルよりも優れた1ステップ発生器を実証した。
論文 参考訳(メタデータ) (2024-05-09T17:59:40Z) - One-step Diffusion with Distribution Matching Distillation [54.723565605974294]
本稿では,拡散モデルを1ステップ画像生成器に変換する手法である分散マッチング蒸留(DMD)を紹介する。
約KLの発散を最小化することにより,拡散モデルと分布レベルで一致した一段階画像生成装置を強制する。
提案手法は,イメージネット64x64では2.62 FID,ゼロショットCOCO-30kでは11.49 FIDに到達した。
論文 参考訳(メタデータ) (2023-11-30T18:59:20Z) - SDDM: Score-Decomposed Diffusion Models on Manifolds for Unpaired
Image-to-Image Translation [96.11061713135385]
本研究は,画像生成時の絡み合った分布を明示的に最適化する,新しいスコア分解拡散モデルを提案する。
我々は、スコア関数の精製部分とエネルギー誘導を等しくし、多様体上の多目的最適化を可能にする。
SDDMは既存のSBDMベースの手法よりも優れており、I2Iベンチマークでは拡散ステップがはるかに少ない。
論文 参考訳(メタデータ) (2023-08-04T06:21:57Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
SinDiffusionは1つの自然な画像からパッチの内部分布を捉えるためにデノナイズ拡散モデルを利用する。
SinDiffusionは、2つのコア設計に基づいている。まず、SinDiffusionは、段階的にスケールが成長する複数のモデルではなく、1つのスケールで1つのモデルで訓練されている。
第2に,拡散ネットワークのパッチレベルの受容領域は,画像のパッチ統計を捉える上で重要かつ効果的であることを示す。
論文 参考訳(メタデータ) (2022-11-22T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。