Regularized Distribution Matching Distillation for One-step Unpaired Image-to-Image Translation
- URL: http://arxiv.org/abs/2406.14762v1
- Date: Thu, 20 Jun 2024 22:22:31 GMT
- Title: Regularized Distribution Matching Distillation for One-step Unpaired Image-to-Image Translation
- Authors: Denis Rakitin, Ivan Shchekotov, Dmitry Vetrov,
- Abstract summary: We introduce Regularized Distribution Matching Distillation, applicable to unpaired image-to-image (I2I) problems.
We demonstrate its empirical performance in application to several translation tasks, including 2D examples and I2I between different image datasets.
- Score: 1.8434042562191815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion distillation methods aim to compress the diffusion models into efficient one-step generators while trying to preserve quality. Among them, Distribution Matching Distillation (DMD) offers a suitable framework for training general-form one-step generators, applicable beyond unconditional generation. In this work, we introduce its modification, called Regularized Distribution Matching Distillation, applicable to unpaired image-to-image (I2I) problems. We demonstrate its empirical performance in application to several translation tasks, including 2D examples and I2I between different image datasets, where it performs on par or better than multi-step diffusion baselines.
Related papers
- DDIL: Improved Diffusion Distillation With Imitation Learning [57.3467234269487]
Diffusion models excel at generative modeling (e.g., text-to-image) but sampling requires multiple denoising network passes.
Progressive distillation or consistency distillation have shown promise by reducing the number of passes.
We show that DDIL consistency improves on baseline algorithms of progressive distillation (PD), Latent consistency models (LCM) and Distribution Matching Distillation (DMD2)
arXiv Detail & Related papers (2024-10-15T18:21:47Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - One-step Diffusion with Distribution Matching Distillation [54.723565605974294]
We introduce Distribution Matching Distillation (DMD), a procedure to transform a diffusion model into a one-step image generator.
We enforce the one-step image generator match the diffusion model at distribution level, by minimizing an approximate KL divergence.
Our method outperforms all published few-step diffusion approaches, reaching 2.62 FID on ImageNet 64x64 and 11.49 FID on zero-shot COCO-30k.
arXiv Detail & Related papers (2023-11-30T18:59:20Z) - SDDM: Score-Decomposed Diffusion Models on Manifolds for Unpaired
Image-to-Image Translation [96.11061713135385]
This work presents a new score-decomposed diffusion model to explicitly optimize the tangled distributions during image generation.
We equalize the refinement parts of the score function and energy guidance, which permits multi-objective optimization on the manifold.
SDDM outperforms existing SBDM-based methods with much fewer diffusion steps on several I2I benchmarks.
arXiv Detail & Related papers (2023-08-04T06:21:57Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.