Active Learning for Fair and Stable Online Allocations
- URL: http://arxiv.org/abs/2406.14784v1
- Date: Thu, 20 Jun 2024 23:23:23 GMT
- Title: Active Learning for Fair and Stable Online Allocations
- Authors: Riddhiman Bhattacharya, Thanh Nguyen, Will Wei Sun, Mohit Tawarmalani,
- Abstract summary: We consider feedback from a select subset of agents at each epoch of the online resource allocation process.
Our algorithms provide regret bounds that are sub-linear in number of time-periods for various measures.
We show that efficient decision-making does not require extensive feedback and produces efficient outcomes for a variety of problem classes.
- Score: 6.23798328186465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore an active learning approach for dynamic fair resource allocation problems. Unlike previous work that assumes full feedback from all agents on their allocations, we consider feedback from a select subset of agents at each epoch of the online resource allocation process. Despite this restriction, our proposed algorithms provide regret bounds that are sub-linear in number of time-periods for various measures that include fairness metrics commonly used in resource allocation problems and stability considerations in matching mechanisms. The key insight of our algorithms lies in adaptively identifying the most informative feedback using dueling upper and lower confidence bounds. With this strategy, we show that efficient decision-making does not require extensive feedback and produces efficient outcomes for a variety of problem classes.
Related papers
- Online Decision Mediation [72.80902932543474]
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior.
In clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances.
arXiv Detail & Related papers (2023-10-28T05:59:43Z) - Evolutionary Optimization for Proactive and Dynamic Computing Resource
Allocation in Open Radio Access Network [4.9711284100869815]
Intelligent techniques are urged to achieve automatic allocation of the computing resource in Open Radio Access Network (O-RAN)
Existing problem formulation to solve this resource allocation problem is unsuitable as it defines the capacity utility of resource in an inappropriate way.
New formulation that better describes the problem is proposed.
arXiv Detail & Related papers (2022-01-12T08:52:04Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity,
and Optimism [33.116006446428756]
We study multi-agent online learning problems in the presence of delays and asynchronicities.
We derive adaptive learning strategies with optimal regret bounds, at both the agent and network levels.
arXiv Detail & Related papers (2020-12-21T18:55:55Z) - Online Learning Demands in Max-min Fairness [91.37280766977923]
We describe mechanisms for the allocation of a scarce resource among multiple users in a way that is efficient, fair, and strategy-proof.
The mechanism is repeated for multiple rounds and a user's requirements can change on each round.
At the end of each round, users provide feedback about the allocation they received, enabling the mechanism to learn user preferences over time.
arXiv Detail & Related papers (2020-12-15T22:15:20Z) - Coordinated Online Learning for Multi-Agent Systems with Coupled
Constraints and Perturbed Utility Observations [91.02019381927236]
We introduce a novel method to steer the agents toward a stable population state, fulfilling the given resource constraints.
The proposed method is a decentralized resource pricing method based on the resource loads resulting from the augmentation of the game's Lagrangian.
arXiv Detail & Related papers (2020-10-21T10:11:17Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Regularized Online Allocation Problems: Fairness and Beyond [7.433931244705934]
We introduce the emphregularized online allocation problem, a variant that includes a non-linear regularizer acting on the total resource consumption.
In this problem, requests repeatedly arrive over time and, for each request, a decision maker needs to take an action that generates a reward and consumes resources.
The objective is to simultaneously maximize additively separable rewards and the value of a non-separable regularizer subject to the resource constraints.
arXiv Detail & Related papers (2020-07-01T14:24:58Z) - Valid Explanations for Learning to Rank Models [5.320400771224103]
We propose a model agnostic local explanation method that seeks to identify a small subset of input features as explanation to a ranking decision.
We introduce new notions of validity and completeness of explanations specifically for rankings, based on the presence or absence of selected features.
arXiv Detail & Related papers (2020-04-29T06:21:56Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.