Evolutionary Optimization for Proactive and Dynamic Computing Resource
Allocation in Open Radio Access Network
- URL: http://arxiv.org/abs/2201.04361v1
- Date: Wed, 12 Jan 2022 08:52:04 GMT
- Title: Evolutionary Optimization for Proactive and Dynamic Computing Resource
Allocation in Open Radio Access Network
- Authors: Gan Ruan, Leandro L. Minku, Zhao Xu, Xin Yao
- Abstract summary: Intelligent techniques are urged to achieve automatic allocation of the computing resource in Open Radio Access Network (O-RAN)
Existing problem formulation to solve this resource allocation problem is unsuitable as it defines the capacity utility of resource in an inappropriate way.
New formulation that better describes the problem is proposed.
- Score: 4.9711284100869815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent techniques are urged to achieve automatic allocation of the
computing resource in Open Radio Access Network (O-RAN), to save computing
resource, increase utilization rate of them and decrease the delay. However,
the existing problem formulation to solve this resource allocation problem is
unsuitable as it defines the capacity utility of resource in an inappropriate
way and tends to cause much delay. Moreover, the existing problem has only been
attempted to be solved based on greedy search, which is not ideal as it could
get stuck into local optima. Considering those, a new formulation that better
describes the problem is proposed. In addition, as a well-known global search
meta heuristic approach, an evolutionary algorithm (EA) is designed tailored
for solving the new problem formulation, to find a resource allocation scheme
to proactively and dynamically deploy the computing resource for processing
upcoming traffic data. Experimental studies carried out on several real-world
datasets and newly generated artificial datasets with more properties beyond
the real-world datasets have demonstrated the significant superiority over a
baseline greedy algorithm under different parameter settings. Moreover,
experimental studies are taken to compare the proposed EA and two variants, to
indicate the impact of different algorithm choices.
Related papers
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - An Improved Artificial Fish Swarm Algorithm for Solving the Problem of
Investigation Path Planning [8.725702964289479]
We propose a chaotic artificial fish swarm algorithm based on multiple population differential evolution (DE-CAFSA)
We incorporate adaptive field of view and step size adjustments, replace random behavior with the 2-opt operation, and introduce chaos theory and sub-optimal solutions.
Experimental results demonstrate that DE-CAFSA outperforms other algorithms on various public datasets of different sizes.
arXiv Detail & Related papers (2023-10-20T09:35:51Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.
We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.
We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Intelligent Proactive Fault Tolerance at the Edge through Resource Usage
Prediction [0.7046417074932255]
We propose an Intelligent Proactive Fault Tolerance (IPFT) method that leverages the edge resource usage predictions through Recurrent Neural Networks (RNN)
In this paper, we focus on the process-faults, which are related with the inability of the infrastructure to provide Quality of Service (QoS) in acceptable ranges due to the lack of processing power.
arXiv Detail & Related papers (2023-02-09T00:42:34Z) - Adaptive Population-based Simulated Annealing for Uncertain Resource
Constrained Job Scheduling [6.2364674720444855]
Resource constrained job scheduling (RCJS) is a hard optimisation problem that cannot be solved efficiently with existing optimisation methods.
This study proposes an adaptive population-based simulated algorithm that can overcome the limitations of existing methods for RCJS with uncertainty.
The results show that the proposed algorithm outperforms existing methods across a wide range of benchmark RCJS instances and uncertainty levels.
arXiv Detail & Related papers (2022-10-31T03:20:41Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.