論文の概要: Is This a Bad Table? A Closer Look at the Evaluation of Table Generation from Text
- arxiv url: http://arxiv.org/abs/2406.14829v2
- Date: Wed, 25 Sep 2024 16:27:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:10:29.109540
- Title: Is This a Bad Table? A Closer Look at the Evaluation of Table Generation from Text
- Title(参考訳): これは悪いテーブルか? テキストからテーブル生成を評価する
- Authors: Pritika Ramu, Aparna Garimella, Sambaran Bandyopadhyay,
- Abstract要約: テーブルの品質評価のための既存の尺度は、テーブルの全体的なセマンティクスをキャプチャすることができない。
テーブルのセマンティクスをキャプチャするテーブル評価戦略であるTabEvalを提案する。
提案手法を検証するために,1250種類のウィキペディアテーブルのテキスト記述からなるデータセットをキュレートする。
- 参考スコア(独自算出の注目度): 21.699434525769586
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Understanding whether a generated table is of good quality is important to be able to use it in creating or editing documents using automatic methods. In this work, we underline that existing measures for table quality evaluation fail to capture the overall semantics of the tables, and sometimes unfairly penalize good tables and reward bad ones. We propose TabEval, a novel table evaluation strategy that captures table semantics by first breaking down a table into a list of natural language atomic statements and then compares them with ground truth statements using entailment-based measures. To validate our approach, we curate a dataset comprising of text descriptions for 1,250 diverse Wikipedia tables, covering a range of topics and structures, in contrast to the limited scope of existing datasets. We compare TabEval with existing metrics using unsupervised and supervised text-to-table generation methods, demonstrating its stronger correlation with human judgments of table quality across four datasets.
- Abstract(参考訳): 生成したテーブルが高品質であるかどうかを理解するためには、自動メソッドを使用して文書の作成や編集に使用することが重要である。
本研究では,テーブル品質評価のための既存の尺度では,テーブルの全体的意味を捉えることができず,時に良いテーブルを不公平に罰し,悪いテーブルに報いる。
本研究では,まずテーブルを自然言語のアトミックステートメントのリストに分解してテーブルの意味を抽出し,それに基づいて基本真理文と比較するテーブル評価戦略であるTabEvalを提案する。
提案手法を検証するために,既存のデータセットの限られた範囲とは対照的に,多種多様なウィキペディアテーブルのテキスト記述からなるデータセットをキュレートした。
本研究では,TabEvalを教師なしおよび教師なしのテキスト・ツー・テーブル生成手法を用いて既存のメトリクスと比較し,テーブル品質の人為的判断と4つのデータセット間の相関性を示す。
関連論文リスト
- ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models [58.34560740973768]
本稿では,言語モデル(LM)を利用して文献レビュー表を生成するフレームワークを提案する。
ArXiv論文から抽出された2,228の文献レビューテーブルの新しいデータセットは、合計で7,542の論文を合成する。
我々は、LMが参照テーブルを再構築する能力を評価し、追加のコンテキストからこのタスクの利点を見出す。
論文 参考訳(メタデータ) (2024-10-25T18:31:50Z) - UniTabNet: Bridging Vision and Language Models for Enhanced Table Structure Recognition [55.153629718464565]
我々は、画像からテキストへのモデルに基づくテーブル構造解析のための新しいフレームワークUniTabNetを紹介する。
UniTabNetは、画像とテキストのモデルを使ってテーブルセルを分離し、物理デコーダと論理デコーダを統合して完全なテーブル構造を再構築する。
論文 参考訳(メタデータ) (2024-09-20T01:26:32Z) - TDeLTA: A Light-weight and Robust Table Detection Method based on
Learning Text Arrangement [34.73880086005418]
本稿では,学習テキストアレンジメント(TDeLTA)に基づく新しい,軽量で堅牢なテーブル検出手法を提案する。
表を正確に特定するために,表内の意味的役割に応じてテキストブロックを4つのカテゴリに分類するテキスト分類タスクを設計する。
いくつかの最先端の手法と比較して、TDeLTAは大規模な公開データセットの3.1Mモデルパラメータで競合する結果を得る。
論文 参考訳(メタデータ) (2023-12-18T09:18:43Z) - Towards Table-to-Text Generation with Pretrained Language Model: A Table
Structure Understanding and Text Deliberating Approach [60.03002572791552]
本稿では,テーブル構造理解とテキスト検討手法,すなわちTASDを提案する。
具体的には,表構造を考慮したテキスト生成モデルを実現するために,三層多層アテンションネットワークを考案する。
われわれのアプローチは、様々な種類のテーブルに対して忠実で流動的な記述テキストを生成することができる。
論文 参考訳(メタデータ) (2023-01-05T14:03:26Z) - TableFormer: Robust Transformer Modeling for Table-Text Encoding [18.00127368618485]
テーブル理解のための既存のモデルはテーブル構造の線形化を必要とし、行や列の順序は不要なバイアスとしてエンコードされる。
本研究では,テーブルテキストエンコーディングアーキテクチャであるTableFormerを提案する。
論文 参考訳(メタデータ) (2022-03-01T07:23:06Z) - Learning Better Representation for Tables by Self-Supervised Tasks [23.69766883380125]
本稿では,表表現の学習を支援するために,数値順序付けと有意順序付けという2つの自己教師型タスクを提案する。
本手法はNBAゲーム統計と関連ニュースからなるROTOWIREを用いて検証する。
論文 参考訳(メタデータ) (2020-10-15T09:03:38Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
テーブルセマンティック解析のための効果的な事前学習手法GraPPaを提案する。
我々は、同期文脈自由文法を用いて、高自由度テーブル上に合成質問ペアを構築する。
実世界のデータを表現できるモデルの能力を維持するため、マスキング言語モデリングも含んでいる。
論文 参考訳(メタデータ) (2020-09-29T08:17:58Z) - Towards Faithful Neural Table-to-Text Generation with Content-Matching
Constraints [63.84063384518667]
そこで本研究では,トランスフォーマーをベースとした新たな生成フレームワークを提案する。
忠実度を強制する手法の中核となる技術は、テーブル-テキストの最適トランスポート・マッチング・ロスである。
忠実度を評価するため,テーブル・ツー・テキスト生成問題に特化した新しい自動尺度を提案する。
論文 参考訳(メタデータ) (2020-05-03T02:54:26Z) - ToTTo: A Controlled Table-To-Text Generation Dataset [61.83159452483026]
ToTToはオープンドメインの英語のテーブル・トゥ・テキストのデータセットで、12万以上のトレーニングサンプルがある。
本稿では、ウィキペディアから既存の候補文を直接修正するデータセット構築プロセスを紹介する。
通常流動的であるが、既存の方法は多くの場合、表がサポートしていないフレーズを幻覚させる。
論文 参考訳(メタデータ) (2020-04-29T17:53:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。