Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization
- URL: http://arxiv.org/abs/2406.14876v1
- Date: Fri, 21 Jun 2024 05:57:08 GMT
- Title: Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization
- Authors: Deokjae Lee, Hyun Oh Song, Kyunghyun Cho,
- Abstract summary: We introduce a novel greedy-style subset selection algorithm for batch acquisition.
Our experiments on the red fluorescent proteins show that our proposed method achieves the baseline performance in 1.69x fewer queries.
- Score: 52.80408805368928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning is increasingly adopted for expensive multi-objective combinatorial optimization problems, but it involves a challenging subset selection problem, optimizing the batch acquisition score that quantifies the goodness of a batch for evaluation. Due to the excessively large search space of the subset selection problem, prior methods optimize the batch acquisition on the latent space, which has discrepancies with the actual space, or optimize individual acquisition scores without considering the dependencies among candidates in a batch instead of directly optimizing the batch acquisition. To manage the vast search space, a simple and effective approach is the greedy method, which decomposes the problem into smaller subproblems, yet it has difficulty in parallelization since each subproblem depends on the outcome from the previous ones. To this end, we introduce a novel greedy-style subset selection algorithm that optimizes batch acquisition directly on the combinatorial space by sequential greedy sampling from the greedy policy, specifically trained to address all greedy subproblems concurrently. Notably, our experiments on the red fluorescent proteins design task show that our proposed method achieves the baseline performance in 1.69x fewer queries, demonstrating its efficiency.
Related papers
- Archive-based Single-Objective Evolutionary Algorithms for Submodular Optimization [9.852567834643288]
We introduce for the first time single-objective algorithms that are provably successful for different classes of constrained submodular problems.
Our algorithms are variants of the $(lambda)$-EA and $(+1)$-EA.
arXiv Detail & Related papers (2024-06-19T10:08:12Z) - Data-Efficient Interactive Multi-Objective Optimization Using ParEGO [6.042269506496206]
Multi-objective optimization seeks to identify a set of non-dominated solutions that provide optimal trade-offs among competing objectives.
In practical applications, decision-makers (DMs) will select a single solution that aligns with their preferences to be implemented.
We propose two novel algorithms that efficiently locate the most preferred region of the Pareto front in expensive-to-evaluate problems.
arXiv Detail & Related papers (2024-01-12T15:55:51Z) - Global and Preference-based Optimization with Mixed Variables using Piecewise Affine Surrogates [0.6083861980670925]
This paper proposes a novel surrogate-based global optimization algorithm to solve linearly constrained mixed-variable problems.
We assume the objective function is black-box and expensive-to-evaluate, while the linear constraints are quantifiable unrelaxable a priori known.
We introduce two types of exploration functions to efficiently search the feasible domain via mixed-integer linear programming solvers.
arXiv Detail & Related papers (2023-02-09T15:04:35Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Dynamic Multi-objective Ensemble of Acquisition Functions in Batch
Bayesian Optimization [1.1602089225841632]
The acquisition function plays a crucial role in the optimization process.
Three acquisition functions are dynamically selected from a set based on their current and historical performance.
Using an evolutionary multi-objective algorithm to optimize such a MOP, a set of non-dominated solutions can be obtained.
arXiv Detail & Related papers (2022-06-22T14:09:18Z) - Optimizer Amalgamation [124.33523126363728]
We are motivated to study a new problem named Amalgamation: how can we best combine a pool of "teacher" amalgamations into a single "student" that can have stronger problem-specific performance?
First, we define three differentiable mechanisms to amalgamate a pool of analyticals by gradient descent.
In order to reduce variance of the process, we also explore methods to stabilize the process by perturbing the target.
arXiv Detail & Related papers (2022-03-12T16:07:57Z) - Multidimensional Assignment Problem for multipartite entity resolution [69.48568967931608]
Multipartite entity resolution aims at integrating records from multiple datasets into one entity.
We apply two procedures, a Greedy algorithm and a large scale neighborhood search, to solve the assignment problem.
We find evidence that design-based multi-start can be more efficient as the size of databases grow large.
arXiv Detail & Related papers (2021-12-06T20:34:55Z) - Batch Bayesian Optimization on Permutations using Acquisition Weighted
Kernels [86.11176756341114]
We introduce LAW, a new efficient batch acquisition method based on the determinantal point process.
We provide a regret analysis for our method to gain insight in its theoretical properties.
We evaluate the method on several standard problems involving permutations such as quadratic assignment.
arXiv Detail & Related papers (2021-02-26T10:15:57Z) - Fast Greedy Subset Selection from Large Candidate Solution Sets in
Evolutionary Multi-objective Optimization [11.110675371854988]
We discuss the efficiency of greedy subset selection for the hypervolume, IGD and IGD+ indicators.
Our idea is to use the submodular property, which is known for the hypervolume indicator, to improve their efficiency.
arXiv Detail & Related papers (2021-02-01T16:14:15Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.