Archive-based Single-Objective Evolutionary Algorithms for Submodular Optimization
- URL: http://arxiv.org/abs/2406.13414v1
- Date: Wed, 19 Jun 2024 10:08:12 GMT
- Title: Archive-based Single-Objective Evolutionary Algorithms for Submodular Optimization
- Authors: Frank Neumann, Günter Rudolph,
- Abstract summary: We introduce for the first time single-objective algorithms that are provably successful for different classes of constrained submodular problems.
Our algorithms are variants of the $(lambda)$-EA and $(+1)$-EA.
- Score: 9.852567834643288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constrained submodular optimization problems play a key role in the area of combinatorial optimization as they capture many NP-hard optimization problems. So far, Pareto optimization approaches using multi-objective formulations have been shown to be successful to tackle these problems while single-objective formulations lead to difficulties for algorithms such as the $(1+1)$-EA due to the presence of local optima. We introduce for the first time single-objective algorithms that are provably successful for different classes of constrained submodular maximization problems. Our algorithms are variants of the $(1+\lambda)$-EA and $(1+1)$-EA and increase the feasible region of the search space incrementally in order to deal with the considered submodular problems.
Related papers
- Improved Parallel Algorithm for Non-Monotone Submodular Maximization under Knapsack Constraint [0.0]
This work proposes an efficient parallel algorithm for non-monomodular size under a knapsack constraint.
Our algorithm improves the existing parallel one from $8+epsilon$ to $7+epsilon$ with $O(log n)$ adaptive complexity.
arXiv Detail & Related papers (2024-09-06T17:17:52Z) - Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
We introduce a novel greedy-style subset selection algorithm for batch acquisition.
Our experiments on the red fluorescent proteins show that our proposed method achieves the baseline performance in 1.69x fewer queries.
arXiv Detail & Related papers (2024-06-21T05:57:08Z) - Quality-Diversity Algorithms Can Provably Be Helpful for Optimization [24.694984679399315]
Quality-Diversity (QD) algorithms aim to find a set of high-performing, yet diverse solutions.
This paper tries to shed some light on the optimization ability of QD algorithms via rigorous running time analysis.
arXiv Detail & Related papers (2024-01-19T07:40:24Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
Most of the real-world problems are multimodal in nature that consists of multiple optimum values.
Classical gradient-based methods fail for optimization problems in which the objective functions are either discontinuous or non-differentiable.
We have proposed an algorithm known as Enhanced Opposition Differential Evolution (EODE) algorithm to solve the MMOPs.
arXiv Detail & Related papers (2022-08-23T16:18:27Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Meta-learning based Alternating Minimization Algorithm for Non-convex
Optimization [9.774392581946108]
We propose a novel solution for challenging non-problems of multiple variables.
Our proposed approach is able to achieve effective iterations in cases while other methods would typically fail.
arXiv Detail & Related papers (2020-09-09T10:45:00Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.