Efficient Graph Similarity Computation with Alignment Regularization
- URL: http://arxiv.org/abs/2406.14929v1
- Date: Fri, 21 Jun 2024 07:37:28 GMT
- Title: Efficient Graph Similarity Computation with Alignment Regularization
- Authors: Wei Zhuo, Guang Tan,
- Abstract summary: Graph similarity computation (GSC) is a learning-based prediction task using Graph Neural Networks (GNNs)
We show that high-quality learning can be attained with a simple yet powerful regularization technique, which we call the Alignment Regularization (AReg)
In the inference stage, the graph-level representations learned by the GNN encoder are directly used to compute the similarity score without using AReg again to speed up inference.
- Score: 7.143879014059894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the graph similarity computation (GSC) task based on graph edit distance (GED) estimation. State-of-the-art methods treat GSC as a learning-based prediction task using Graph Neural Networks (GNNs). To capture fine-grained interactions between pair-wise graphs, these methods mostly contain a node-level matching module in the end-to-end learning pipeline, which causes high computational costs in both the training and inference stages. We show that the expensive node-to-node matching module is not necessary for GSC, and high-quality learning can be attained with a simple yet powerful regularization technique, which we call the Alignment Regularization (AReg). In the training stage, the AReg term imposes a node-graph correspondence constraint on the GNN encoder. In the inference stage, the graph-level representations learned by the GNN encoder are directly used to compute the similarity score without using AReg again to speed up inference. We further propose a multi-scale GED discriminator to enhance the expressive ability of the learned representations. Extensive experiments on real-world datasets demonstrate the effectiveness, efficiency and transferability of our approach.
Related papers
- Sparse Decomposition of Graph Neural Networks [20.768412002413843]
We propose an approach to reduce the number of nodes that are included during aggregation.
We achieve this through a sparse decomposition, learning to approximate node representations using a weighted sum of linearly transformed features.
We demonstrate via extensive experiments that our method outperforms other baselines designed for inference speedup.
arXiv Detail & Related papers (2024-10-25T17:52:16Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGM is a framework to boost the performance of Graph Neural Networks (GNNs) based graph matching without training.
Applying TFGM on various GNNs shows promising improvements over baselines.
arXiv Detail & Related papers (2022-01-14T09:04:46Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGAT is a method to make attention based GNNs lightweight by using spectral sparsification to generate an optimal pruning of the input graph.
We experimentally evaluate FastGAT on several large real world graph datasets for node classification tasks.
arXiv Detail & Related papers (2020-06-15T22:07:54Z) - CoSimGNN: Towards Large-scale Graph Similarity Computation [5.17905821006887]
Graph Neural Networks (GNNs) provide a data-driven solution for this task.
Existing GNN-based methods, which either respectively embeds two graphs or deploy cross-graph interactions for whole graph pairs, are still not able to achieve competitive results.
We propose the "embedding-coarsening-matching" framework CoSimGNN, which first embeds and coarsens large graphs with adaptive pooling operation and then deploys fine-grained interactions on the coarsened graphs for final similarity scores.
arXiv Detail & Related papers (2020-05-14T16:33:13Z) - Self-Constructing Graph Convolutional Networks for Semantic Labeling [23.623276007011373]
We propose a novel architecture called the Self-Constructing Graph (SCG), which makes use of learnable latent variables to generate embeddings.
SCG can automatically obtain optimized non-local context graphs from complex-shaped objects in aerial imagery.
We demonstrate the effectiveness and flexibility of the proposed SCG on the publicly available ISPRS Vaihingen dataset.
arXiv Detail & Related papers (2020-03-15T21:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.