Towards Retrieval Augmented Generation over Large Video Libraries
- URL: http://arxiv.org/abs/2406.14938v1
- Date: Fri, 21 Jun 2024 07:52:01 GMT
- Title: Towards Retrieval Augmented Generation over Large Video Libraries
- Authors: Yannis Tevissen, Khalil Guetari, Frédéric Petitpont,
- Abstract summary: We introduce the task of Video Library Question Answering (VLQA) through an interoperable architecture.
We propose a system that uses large language models (LLMs) to generate search queries, retrieving relevant video moments.
An answer generation module then integrates user queries with this metadata to produce responses with specific video timestamps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video content creators need efficient tools to repurpose content, a task that often requires complex manual or automated searches. Crafting a new video from large video libraries remains a challenge. In this paper we introduce the task of Video Library Question Answering (VLQA) through an interoperable architecture that applies Retrieval Augmented Generation (RAG) to video libraries. We propose a system that uses large language models (LLMs) to generate search queries, retrieving relevant video moments indexed by speech and visual metadata. An answer generation module then integrates user queries with this metadata to produce responses with specific video timestamps. This approach shows promise in multimedia content retrieval, and AI-assisted video content creation.
Related papers
- GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
This paper introduces a novel data-centric approach, Generalized Query Expansion (GQE), to address the inherent information imbalance between text and video.
By adaptively segmenting videos into short clips and employing zero-shot captioning, GQE enriches the training dataset with comprehensive scene descriptions.
GQE achieves state-of-the-art performance on several benchmarks, including MSR-VTT, MSVD, LSMDC, and VATEX.
arXiv Detail & Related papers (2024-08-14T01:24:09Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - How Good is my Video LMM? Complex Video Reasoning and Robustness Evaluation Suite for Video-LMMs [98.37571997794072]
We present the Complex Video Reasoning and Robustness Evaluation Suite (CVRR-ES)
CVRR-ES comprehensively assesses the performance of Video-LMMs across 11 diverse real-world video dimensions.
Our findings provide valuable insights for building the next generation of human-centric AI systems.
arXiv Detail & Related papers (2024-05-06T17:59:45Z) - iRAG: Advancing RAG for Videos with an Incremental Approach [3.486835161875852]
One-time, upfront conversion of all content in large corpus of videos into text descriptions entails high processing times.
We propose an incremental RAG system called iRAG, which augments RAG with a novel incremental workflow to enable interactive querying of video data.
iRAG is the first system to augment RAG with an incremental workflow to support efficient interactive querying of a large corpus of videos.
arXiv Detail & Related papers (2024-04-18T16:38:02Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - Improving Video Corpus Moment Retrieval with Partial Relevance Enhancement [72.7576395034068]
Video Corpus Moment Retrieval (VCMR) is a new video retrieval task aimed at retrieving a relevant moment from a large corpus of untrimmed videos using a text query.
We argue that effectively capturing the partial relevance between the query and video is essential for the VCMR task.
For video retrieval, we introduce a multi-modal collaborative video retriever, generating different query representations for the two modalities.
For moment localization, we propose the focus-then-fuse moment localizer, utilizing modality-specific gates to capture essential content.
arXiv Detail & Related papers (2024-02-21T07:16:06Z) - InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding
and Generation [90.71796406228265]
InternVid is a large-scale video-centric multimodal dataset that enables learning powerful and transferable video-text representations.
The InternVid dataset contains over 7 million videos lasting nearly 760K hours, yielding 234M video clips accompanied by detailed descriptions of total 4.1B words.
arXiv Detail & Related papers (2023-07-13T17:58:32Z) - Hierarchical Video-Moment Retrieval and Step-Captioning [68.4859260853096]
HiREST consists of 3.4K text-video pairs from an instructional video dataset.
Our hierarchical benchmark consists of video retrieval, moment retrieval, and two novel moment segmentation and step captioning tasks.
arXiv Detail & Related papers (2023-03-29T02:33:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.