Unlocking the Global Synergies in Low-Rank Adapters
- URL: http://arxiv.org/abs/2406.14956v1
- Date: Fri, 21 Jun 2024 08:10:03 GMT
- Title: Unlocking the Global Synergies in Low-Rank Adapters
- Authors: Zixi Zhang, Cheng Zhang, Xitong Gao, Robert D. Mullins, George A. Constantinides, Yiren Zhao,
- Abstract summary: Low-rank Adaption (LoRA) has been the de-facto parameter-efficient fine-tuning technique for large language models.
We present HeteroLoRA, a light-weight search algorithm that leverages zero-cost proxies to allocate the limited LoRA trainable parameters.
Experiments show that HeteroLoRA enables improvements in model performance given the same parameter budge.
- Score: 20.32980343066711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-rank Adaption (LoRA) has been the de-facto parameter-efficient fine-tuning technique for large language models. We present HeteroLoRA, a light-weight search algorithm that leverages zero-cost proxies to allocate the limited LoRA trainable parameters across the model for better fine-tuned performance. In addition to the allocation for the standard LoRA-adapted models, we also demonstrate the efficacy of HeteroLoRA by performing the allocation in a more challenging search space that includes LoRA modules and LoRA-adapted shortcut connections. Experiments show that HeteroLoRA enables improvements in model performance given the same parameter budge. For example, on MRPC, we see an improvement of 1.6% in accuracy with similar training parameter budget. We will open-source our algorithm once the paper is accepted.
Related papers
- LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.
Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.
LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-11-22T14:19:01Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements.
This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization.
arXiv Detail & Related papers (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - NoRA: Nested Low-Rank Adaptation for Efficient Fine-Tuning Large Models [27.757883818520217]
Nested Low-Rank Adaptation (NoRA) is a novel approach to parameter-efficient fine-tuning.
By freezing outer LoRA weights and using an inner LoRA design, NoRA enables precise task adaptation with a compact parameter space.
arXiv Detail & Related papers (2024-08-18T12:18:56Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - DoRA: Enhancing Parameter-Efficient Fine-Tuning with Dynamic Rank Distribution [28.589498108609202]
Low-Rank Adaptation (LoRA) relies on a bypass framework that ignores the differential parameter budget requirements across weight matrices.
DoRA decomposes high-rank LoRA layers into structured single-rank components, allowing for dynamic pruning of parameter budget.
Experimental results demonstrate that DoRA can achieve competitive performance compared with LoRA and full model fine-tuning.
arXiv Detail & Related papers (2024-05-27T17:02:27Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
We propose ResLoRA, an improved framework of low-rank adaptation (LoRA)
Our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA.
The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-02-28T04:33:20Z) - PRoLoRA: Partial Rotation Empowers More Parameter-Efficient LoRA [45.38491644250814]
Partially Rotation-enhanced Low-Rank Adaptation (PRoLoRA) is an intra-layer sharing mechanism.
PRoLoRA retains its advantages, and effectively circumvents the drawbacks of peer parameter-sharing methods.
Empirical experiments demonstrate the remarkably higher parameter efficiency of PRoLoRA.
arXiv Detail & Related papers (2024-02-24T13:39:05Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
We introduce Chain of LoRA, an iterative optimization framework inspired by the Frank-Wolfe algorithm.
We demonstrate that COLA can consistently outperform LoRA without additional computational or memory costs.
arXiv Detail & Related papers (2024-01-08T14:26:49Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.