論文の概要: Contextual Interaction via Primitive-based Adversarial Training For Compositional Zero-shot Learning
- arxiv url: http://arxiv.org/abs/2406.14962v1
- Date: Fri, 21 Jun 2024 08:18:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 14:13:25.543424
- Title: Contextual Interaction via Primitive-based Adversarial Training For Compositional Zero-shot Learning
- Title(参考訳): 構成的ゼロショット学習のための原始的適応学習による文脈相互作用
- Authors: Suyi Li, Chenyi Jiang, Shidong Wang, Yang Long, Zheng Zhang, Haofeng Zhang,
- Abstract要約: 合成ゼロショット学習(CZSL)は、既知の属性オブジェクト対を通じて新規な合成を識別することを目的としている。
CZSLタスクの最大の課題は、属性とオブジェクトの視覚的プリミティブの間の複雑な相互作用によって導入された大きな相違にある。
本稿では,モデルに依存しない原始的適応学習(PBadv)手法を提案する。
- 参考スコア(独自算出の注目度): 23.757252768668497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compositional Zero-shot Learning (CZSL) aims to identify novel compositions via known attribute-object pairs. The primary challenge in CZSL tasks lies in the significant discrepancies introduced by the complex interaction between the visual primitives of attribute and object, consequently decreasing the classification performance towards novel compositions. Previous remarkable works primarily addressed this issue by focusing on disentangling strategy or utilizing object-based conditional probabilities to constrain the selection space of attributes. Unfortunately, few studies have explored the problem from the perspective of modeling the mechanism of visual primitive interactions. Inspired by the success of vanilla adversarial learning in Cross-Domain Few-Shot Learning, we take a step further and devise a model-agnostic and Primitive-Based Adversarial training (PBadv) method to deal with this problem. Besides, the latest studies highlight the weakness of the perception of hard compositions even under data-balanced conditions. To this end, we propose a novel over-sampling strategy with object-similarity guidance to augment target compositional training data. We performed detailed quantitative analysis and retrieval experiments on well-established datasets, such as UT-Zappos50K, MIT-States, and C-GQA, to validate the effectiveness of our proposed method, and the state-of-the-art (SOTA) performance demonstrates the superiority of our approach. The code is available at https://github.com/lisuyi/PBadv_czsl.
- Abstract(参考訳): 合成ゼロショット学習(CZSL)は、既知の属性オブジェクト対を通じて新規な合成を識別することを目的としている。
CZSLタスクの最大の課題は、属性とオブジェクトの視覚的プリミティブ間の複雑な相互作用によって引き起こされる顕著な相違にある。
これまでの顕著な研究は、主にこの問題に対処し、引き離し戦略に焦点をあてたり、属性の選択空間を制限するためにオブジェクトベースの条件付き確率を利用することで解決した。
残念ながら、視覚的原始的相互作用のメカニズムをモデル化する観点からこの問題を探求する研究はほとんどない。
クロスドメインなFew-Shot Learningにおけるバニラ対人学習の成功に触発されて、さらに一歩進んで、モデルに依存しない原始的対人訓練(PBadv)法を考案し、この問題に対処する。
さらに、最新の研究は、データバランスの条件下でさえ硬質成分の知覚の弱さを強調している。
そこで本研究では,対象合成トレーニングデータを拡張するためのオブジェクト類似性ガイダンスを用いた新しいオーバーサンプリング手法を提案する。
我々は,UT-Zappos50K,MIT-States,C-GQAなど,確立されたデータセット上で詳細な定量的解析と検索実験を行い,提案手法の有効性を検証した。
コードはhttps://github.com/lisuyi/PBadv_czsl.comで公開されている。
関連論文リスト
- Revealing the Proximate Long-Tail Distribution in Compositional
Zero-Shot Learning [20.837664254230567]
合成ゼロショット学習(CZSL)は、目に見える状態オブジェクト対から新しいペアへ知識を伝達することを目的としている。
状態オブジェクトの組み合わせの予測によって引き起こされる視覚バイアスは、識別可能なクラスプロトタイプの学習を妨げる視覚的特徴を曖昧にする。
CZSLの長尾分布におけるクラスの役割を数学的に推定する。
この知見に基づいて, 合成による視覚的偏見を分類器の訓練と推定に組み入れ, 事前の近似クラスとして推定する。
論文 参考訳(メタデータ) (2023-12-26T07:35:02Z) - Low-shot Object Learning with Mutual Exclusivity Bias [27.67152913041082]
本稿では,相互排他バイアスの計算フレーミングであるLSME(Low-shot Object Learning with Mutual Exclusivity Bias)を紹介する。
我々は、MLコミュニティがこの挑戦的な学習課題に対処できるように、新しいデータセット、包括的なベースライン、最先端の手法を提供する。
論文 参考訳(メタデータ) (2023-12-06T14:54:10Z) - Hierarchical Visual Primitive Experts for Compositional Zero-Shot
Learning [52.506434446439776]
合成ゼロショット学習(CZSL)は、既知のプリミティブ(属性とオブジェクト)の事前知識で構成を認識することを目的としている。
このような問題に対処するために,コンポジショントランスフォーマー(CoT)と呼ばれるシンプルでスケーラブルなフレームワークを提案する。
提案手法は,MIT-States,C-GQA,VAW-CZSLなど,いくつかのベンチマークでSoTA性能を実現する。
論文 参考訳(メタデータ) (2023-08-08T03:24:21Z) - ProCC: Progressive Cross-primitive Compatibility for Open-World
Compositional Zero-Shot Learning [29.591615811894265]
Open-World Composal Zero-shot Learning (OW-CZSL) は、コンポジション空間に先立って、画像中の状態とオブジェクトプリミティブの新規なコンポジションを認識することを目的としている。
本稿では,OW-CZSLタスクの学習過程を模倣する,Progressive Cross-primitive Compatibility (ProCC) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-11-19T10:09:46Z) - Learning Deep Representations via Contrastive Learning for Instance
Retrieval [11.736450745549792]
本稿では、インスタンス識別に基づくコントラスト学習(CL)を用いて、この問題に取り組むための最初の試みを行う。
本研究では、事前学習されたCLモデルと微調整されたCLモデルから識別表現を導出する能力を探求することにより、この問題に対処する。
論文 参考訳(メタデータ) (2022-09-28T04:36:34Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Siamese Contrastive Embedding Network for Compositional Zero-Shot
Learning [76.13542095170911]
合成ゼロショット学習(CZSL)は、学習中に目に見える状態と対象から形成される見えない構成を認識することを目的としている。
本稿では,未知の合成認識のための新しいSiamese Contrastive Embedding Network(SCEN)を提案する。
提案手法は,3つの挑戦的ベンチマークデータセットに対して,最先端のアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2022-06-29T09:02:35Z) - Novel Human-Object Interaction Detection via Adversarial Domain
Generalization [103.55143362926388]
本研究では,新たな人-物間相互作用(HOI)検出の問題点を考察し,モデルの一般化能力を向上させることを目的とした。
この課題は、主に対象と述語の大きな構成空間に起因し、全ての対象と述語の組み合わせに対する十分な訓練データが欠如している。
本稿では,予測のためのオブジェクト指向不変の特徴を学習するために,対数領域の一般化の統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2020-05-22T22:02:56Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。