Contextual Interaction via Primitive-based Adversarial Training For Compositional Zero-shot Learning
- URL: http://arxiv.org/abs/2406.14962v1
- Date: Fri, 21 Jun 2024 08:18:30 GMT
- Title: Contextual Interaction via Primitive-based Adversarial Training For Compositional Zero-shot Learning
- Authors: Suyi Li, Chenyi Jiang, Shidong Wang, Yang Long, Zheng Zhang, Haofeng Zhang,
- Abstract summary: Compositional Zero-shot Learning (CZSL) aims to identify novel compositions via known attribute-object pairs.
The primary challenge in CZSL tasks lies in the significant discrepancies introduced by the complex interaction between the visual primitives of attribute and object.
We propose a model-agnostic and Primitive-Based Adversarial training (PBadv) method to deal with this problem.
- Score: 23.757252768668497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compositional Zero-shot Learning (CZSL) aims to identify novel compositions via known attribute-object pairs. The primary challenge in CZSL tasks lies in the significant discrepancies introduced by the complex interaction between the visual primitives of attribute and object, consequently decreasing the classification performance towards novel compositions. Previous remarkable works primarily addressed this issue by focusing on disentangling strategy or utilizing object-based conditional probabilities to constrain the selection space of attributes. Unfortunately, few studies have explored the problem from the perspective of modeling the mechanism of visual primitive interactions. Inspired by the success of vanilla adversarial learning in Cross-Domain Few-Shot Learning, we take a step further and devise a model-agnostic and Primitive-Based Adversarial training (PBadv) method to deal with this problem. Besides, the latest studies highlight the weakness of the perception of hard compositions even under data-balanced conditions. To this end, we propose a novel over-sampling strategy with object-similarity guidance to augment target compositional training data. We performed detailed quantitative analysis and retrieval experiments on well-established datasets, such as UT-Zappos50K, MIT-States, and C-GQA, to validate the effectiveness of our proposed method, and the state-of-the-art (SOTA) performance demonstrates the superiority of our approach. The code is available at https://github.com/lisuyi/PBadv_czsl.
Related papers
- Revealing the Proximate Long-Tail Distribution in Compositional
Zero-Shot Learning [20.837664254230567]
Compositional Zero-Shot Learning (CZSL) aims to transfer knowledge from seen state-object pairs to novel pairs.
Visual bias caused by predictions of combinations of state-objects blurs their visual features hindering learning of distinguishable class prototypes.
We mathematically deduce the role of class prior within the long-tailed distribution in CZSL.
Building upon this insight, we incorporate visual bias caused by compositions into the classifier's training and inference by estimating it as a proximate class prior.
arXiv Detail & Related papers (2023-12-26T07:35:02Z) - Low-shot Object Learning with Mutual Exclusivity Bias [27.67152913041082]
This paper introduces Low-shot Object Learning with Mutual Exclusivity Bias (LSME), the first computational framing of mutual exclusivity bias.
We provide a novel dataset, comprehensive baselines, and a state-of-the-art method to enable the ML community to tackle this challenging learning task.
arXiv Detail & Related papers (2023-12-06T14:54:10Z) - Hierarchical Visual Primitive Experts for Compositional Zero-Shot
Learning [52.506434446439776]
Compositional zero-shot learning (CZSL) aims to recognize compositions with prior knowledge of known primitives (attribute and object)
We propose a simple and scalable framework called Composition Transformer (CoT) to address these issues.
Our method achieves SoTA performance on several benchmarks, including MIT-States, C-GQA, and VAW-CZSL.
arXiv Detail & Related papers (2023-08-08T03:24:21Z) - ProCC: Progressive Cross-primitive Compatibility for Open-World
Compositional Zero-Shot Learning [29.591615811894265]
Open-World Compositional Zero-shot Learning (OW-CZSL) aims to recognize novel compositions of state and object primitives in images with no priors on the compositional space.
We propose a novel method, termed Progressive Cross-primitive Compatibility (ProCC), to mimic the human learning process for OW-CZSL tasks.
arXiv Detail & Related papers (2022-11-19T10:09:46Z) - Learning Deep Representations via Contrastive Learning for Instance
Retrieval [11.736450745549792]
This paper makes the first attempt that tackles the problem using instance-discrimination based contrastive learning (CL)
In this work, we approach this problem by exploring the capability of deriving discriminative representations from pre-trained and fine-tuned CL models.
arXiv Detail & Related papers (2022-09-28T04:36:34Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Siamese Contrastive Embedding Network for Compositional Zero-Shot
Learning [76.13542095170911]
Compositional Zero-Shot Learning (CZSL) aims to recognize unseen compositions formed from seen state and object during training.
We propose a novel Siamese Contrastive Embedding Network (SCEN) for unseen composition recognition.
Our method significantly outperforms the state-of-the-art approaches on three challenging benchmark datasets.
arXiv Detail & Related papers (2022-06-29T09:02:35Z) - Novel Human-Object Interaction Detection via Adversarial Domain
Generalization [103.55143362926388]
We study the problem of novel human-object interaction (HOI) detection, aiming at improving the generalization ability of the model to unseen scenarios.
The challenge mainly stems from the large compositional space of objects and predicates, which leads to the lack of sufficient training data for all the object-predicate combinations.
We propose a unified framework of adversarial domain generalization to learn object-invariant features for predicate prediction.
arXiv Detail & Related papers (2020-05-22T22:02:56Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.