Do Large Language Models Exhibit Cognitive Dissonance? Studying the Difference Between Revealed Beliefs and Stated Answers
- URL: http://arxiv.org/abs/2406.14986v2
- Date: Tue, 2 Jul 2024 14:02:04 GMT
- Title: Do Large Language Models Exhibit Cognitive Dissonance? Studying the Difference Between Revealed Beliefs and Stated Answers
- Authors: Manuel Mondal, Ljiljana Dolamic, Gérôme Bovet, Philippe Cudré-Mauroux, Julien Audiffren,
- Abstract summary: We investigate whether these abilities are measurable outside of tailored prompting and MCQ.
Our findings suggest that the Revealed Belief of LLMs significantly differs from their Stated Answer.
As text completion is at the core of LLMs, these results suggest that common evaluation methods may only provide a partial picture.
- Score: 13.644277507363036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompting and Multiple Choices Questions (MCQ) have become the preferred approach to assess the capabilities of Large Language Models (LLMs), due to their ease of manipulation and evaluation. Such experimental appraisals have pointed toward the LLMs' apparent ability to perform causal reasoning or to grasp uncertainty. In this paper, we investigate whether these abilities are measurable outside of tailored prompting and MCQ by reformulating these issues as direct text completion - the foundation of LLMs. To achieve this goal, we define scenarios with multiple possible outcomes and we compare the prediction made by the LLM through prompting (their Stated Answer) to the probability distributions they compute over these outcomes during next token prediction (their Revealed Belief). Our findings suggest that the Revealed Belief of LLMs significantly differs from their Stated Answer and hint at multiple biases and misrepresentations that their beliefs may yield in many scenarios and outcomes. As text completion is at the core of LLMs, these results suggest that common evaluation methods may only provide a partial picture and that more research is needed to assess the extent and nature of their capabilities.
Related papers
- Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Language Models can Evaluate Themselves via Probability Discrepancy [38.54454263880133]
We propose a new self-evaluation method ProbDiff for assessing the efficacy of various Large Language Models (LLMs)
It uniquely utilizes the LLMs being tested to compute the probability discrepancy between the initial response and its revised versions.
Our findings reveal that ProbDiff achieves results on par with those obtained from evaluations based on GPT-4.
arXiv Detail & Related papers (2024-05-17T03:50:28Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - FairBelief - Assessing Harmful Beliefs in Language Models [25.032952666134157]
Language Models (LMs) have been shown to inherit undesired biases that might hurt minorities and underrepresented groups if such systems were integrated into real-world applications without careful fairness auditing.
This paper proposes FairBelief, an analytical approach to capture and assess beliefs, i.e., propositions that an LM may embed with different degrees of confidence and that covertly influence its predictions.
arXiv Detail & Related papers (2024-02-27T10:31:00Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Generating with Confidence: Uncertainty Quantification for Black-box Large Language Models [37.63939774027709]
Large language models (LLMs) specializing in natural language generation (NLG) have recently started exhibiting promising capabilities.
We propose and compare several confidence/uncertainty measures, applying them to *selective NLG* where unreliable results could either be ignored or yielded for further assessment.
Results reveal that a simple measure for the semantic dispersion can be a reliable predictor of the quality of LLM responses.
arXiv Detail & Related papers (2023-05-30T16:31:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.