論文の概要: How Intermodal Interaction Affects the Performance of Deep Multimodal Fusion for Mixed-Type Time Series
- arxiv url: http://arxiv.org/abs/2406.15098v1
- Date: Fri, 21 Jun 2024 12:26:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:42:28.586283
- Title: How Intermodal Interaction Affects the Performance of Deep Multimodal Fusion for Mixed-Type Time Series
- Title(参考訳): 混合型時系列の深層マルチモーダル核融合の性能に及ぼすモーダル間相互作用の影響
- Authors: Simon Dietz, Thomas Altstidl, Dario Zanca, Björn Eskofier, An Nguyen,
- Abstract要約: MTTS(Mixed-type Time Series)は、医療、金融、環境モニタリング、ソーシャルメディアなど、多くの分野で一般的なバイモーダルデータである。
マルチモーダル融合による両モードの統合はMTTSの処理において有望なアプローチである。
MTTS予測のための深層多モード融合手法の総合評価を行った。
- 参考スコア(独自算出の注目度): 3.6958071416494414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixed-type time series (MTTS) is a bimodal data type that is common in many domains, such as healthcare, finance, environmental monitoring, and social media. It consists of regularly sampled continuous time series and irregularly sampled categorical event sequences. The integration of both modalities through multimodal fusion is a promising approach for processing MTTS. However, the question of how to effectively fuse both modalities remains open. In this paper, we present a comprehensive evaluation of several deep multimodal fusion approaches for MTTS forecasting. Our comparison includes three fusion types (early, intermediate, and late) and five fusion methods (concatenation, weighted mean, weighted mean with correlation, gating, and feature sharing). We evaluate these fusion approaches on three distinct datasets, one of which was generated using a novel framework. This framework allows for the control of key data properties, such as the strength and direction of intermodal interactions, modality imbalance, and the degree of randomness in each modality, providing a more controlled environment for testing fusion approaches. Our findings show that the performance of different fusion approaches can be substantially influenced by the direction and strength of intermodal interactions. The study reveals that early and intermediate fusion approaches excel at capturing fine-grained and coarse-grained cross-modal features, respectively. These findings underscore the crucial role of intermodal interactions in determining the most effective fusion strategy for MTTS forecasting.
- Abstract(参考訳): MTTS(Mixed-type Time Series)は、医療、金融、環境モニタリング、ソーシャルメディアなど、多くの分野で一般的なバイモーダルデータである。
定期的にサンプリングされた連続時系列と不規則にサンプリングされたカテゴリーイベントシーケンスから構成される。
マルチモーダル融合による両モードの統合はMTTSの処理において有望なアプローチである。
しかし、両方のモダリティを効果的に融合する方法の問題は未解決のままである。
本稿では,MTTS予測のための深層多モード融合手法の総合評価を行う。
比較対象は,3種類の融合型(早期,中期,後期)と5種類の融合法(結合,重み付き平均,相関付き重み付き平均,ゲーティング,特徴共有)である。
これらの融合手法を3つの異なるデータセットに対して評価し,そのうちの1つを新しいフレームワークを用いて生成した。
このフレームワークは、モーダル間相互作用の強さや方向、モダリティの不均衡、各モーダルにおけるランダムネスの度合いなどの重要なデータ特性の制御を可能にし、融合アプローチをテストするためのより制御された環境を提供する。
本研究により, 異なる融合法の性能は, モーダル間相互作用の方向や強度に大きく影響されることが示唆された。
実験の結果, 初期核融合法と中間核融合法は, 微粒化, 粗粒化に優れていた。
これらの結果は,MTTS予測において最も効果的な融合戦略を決定する上で,モーダル間相互作用が重要な役割を担っていることを裏付けるものである。
関連論文リスト
- Asynchronous Multimodal Video Sequence Fusion via Learning Modality-Exclusive and -Agnostic Representations [19.731611716111566]
本稿では,モダリティ学習のためのマルチモーダル融合手法を提案する。
我々は、モーダル内の信頼性のあるコンテキストダイナミクスをキャプチャする予測的自己アテンションモジュールを導入する。
階層的クロスモーダルアテンションモジュールは、モダリティ間の価値ある要素相関を探索するために設計されている。
両識別器戦略が提示され、異なる表現を敵対的に生成することを保証する。
論文 参考訳(メタデータ) (2024-07-06T04:36:48Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
マルチモーダル感情認識(MMER)システムは、通常、単調なシステムよりも優れている。
本稿では,キーベースのクロスアテンションと融合するために,ジョイントマルチモーダルトランス (JMT) を利用するMMER法を提案する。
論文 参考訳(メタデータ) (2024-03-15T17:23:38Z) - Deep Equilibrium Multimodal Fusion [88.04713412107947]
多重モーダル融合は、複数のモーダルに存在する相補的な情報を統合し、近年多くの注目を集めている。
本稿では,動的多モード核融合プロセスの固定点を求めることにより,多モード核融合に対する新しいDeep equilibrium (DEQ)法を提案する。
BRCA,MM-IMDB,CMU-MOSI,SUN RGB-D,VQA-v2の実験により,DEC融合の優位性が示された。
論文 参考訳(メタデータ) (2023-06-29T03:02:20Z) - A Low-rank Matching Attention based Cross-modal Feature Fusion Method
for Conversational Emotion Recognition [56.20144064187554]
本稿では,会話感情認識(CER)タスクのためのクロスモーダルな特徴融合手法を提案する。
LMAMは、一致重みを設定し、モーダル特徴列間のアテンションスコアを計算することにより、自己注意法よりも少ないパラメータを含む。
LMAMは既存のDLベースのCERメソッドに組み込むことができ、プラグ・アンド・プレイ方式で性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-16T16:02:44Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
ラベル付き単調データのみを用いた半教師付き環境における相互作用定量化の課題について検討する。
相互作用の正確な情報理論的定義を用いて、我々の重要な貢献は下界と上界の導出である。
本稿では、これらの理論結果を用いてマルチモーダルモデルの性能を推定し、データ収集をガイドし、様々なタスクに対して適切なマルチモーダルモデルを選択する方法について述べる。
論文 参考訳(メタデータ) (2023-06-07T15:44:53Z) - Cross-Attention is Not Enough: Incongruity-Aware Dynamic Hierarchical
Fusion for Multimodal Affect Recognition [69.32305810128994]
モダリティ間の同調性は、特に認知に影響を及ぼすマルチモーダル融合の課題となる。
本稿では,動的モダリティゲーティング(HCT-DMG)を用いた階層型クロスモーダルトランスを提案する。
HCT-DMG: 1) 従来のマルチモーダルモデルを約0.8Mパラメータで上回り、2) 不整合が認識に影響を及ぼすハードサンプルを認識し、3) 潜在レベルの非整合性をクロスモーダルアテンションで緩和する。
論文 参考訳(メタデータ) (2023-05-23T01:24:15Z) - IMF: Interactive Multimodal Fusion Model for Link Prediction [13.766345726697404]
異なるモダリティからの知識を統合するために,インタラクティブ・マルチモーダル・フュージョン(IMF)モデルを導入する。
提案手法は,実世界の複数のデータセットに対する経験的評価によって有効であることが実証された。
論文 参考訳(メタデータ) (2023-03-20T01:20:02Z) - MEAformer: Multi-modal Entity Alignment Transformer for Meta Modality
Hybrid [40.745848169903105]
マルチモーダル・エンティティ・アライメント(MMEA)は、異なる知識グラフにまたがる同一のエンティティを発見することを目的としている。
MMEAアルゴリズムはマルチモーダル実体表現のためのKGレベルのモダリティ融合戦略に依存している。
本稿ではメタモダリティハイブリッドのためのマルチモーダルエンティティアライメントトランスであるMEAformerを紹介する。
論文 参考訳(メタデータ) (2022-12-29T20:49:58Z) - Improving Multimodal Fusion with Hierarchical Mutual Information
Maximization for Multimodal Sentiment Analysis [16.32509144501822]
本稿では,MultiModal InfoMax (MMIM) というフレームワークを提案する。
このフレームワークは、下流のMSAタスクのパフォーマンスを改善するために、メインタスク(MSA)と共同で訓練されている。
論文 参考訳(メタデータ) (2021-09-01T14:45:16Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) は、2対のモダリティ表現で融合を行う新しいエンドツーエンドネットワークである。
モデルは、モダリティ間の既知の情報不均衡により、2つのバイモーダルペアを入力として取る。
論文 参考訳(メタデータ) (2021-07-28T23:33:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。