論文の概要: FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays
- arxiv url: http://arxiv.org/abs/2406.15117v1
- Date: Fri, 21 Jun 2024 13:08:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:32:37.640302
- Title: FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays
- Title(参考訳): FA-Net:胸部X線における肺炎検出のためのファジィ注意支援型ディープニューラルネットワーク
- Authors: Ayush Roy, Anurag Bhattacharjee, Diego Oliva, Oscar Ramos-Soto, Francisco J. Alvarez-Padilla, Ram Sarkar,
- Abstract要約: 肺炎(Pneumonia)は、細菌、真菌、ウイルスによって引き起こされる呼吸器感染症である。
早期診断は有効治療の確保と生存率の向上に不可欠である。
胸部X線画像を用いた自動肺炎検出のためのコンピュータ支援診断システムを開発した。
- 参考スコア(独自算出の注目度): 28.319405767795047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pneumonia is a respiratory infection caused by bacteria, fungi, or viruses. It affects many people, particularly those in developing or underdeveloped nations with high pollution levels, unhygienic living conditions, overcrowding, and insufficient medical infrastructure. Pneumonia can cause pleural effusion, where fluids fill the lungs, leading to respiratory difficulty. Early diagnosis is crucial to ensure effective treatment and increase survival rates. Chest X-ray imaging is the most commonly used method for diagnosing pneumonia. However, visual examination of chest X-rays can be difficult and subjective. In this study, we have developed a computer-aided diagnosis system for automatic pneumonia detection using chest X-ray images. We have used DenseNet-121 and ResNet50 as the backbone for the binary class (pneumonia and normal) and multi-class (bacterial pneumonia, viral pneumonia, and normal) classification tasks, respectively. We have also implemented a channel-specific spatial attention mechanism, called Fuzzy Channel Selective Spatial Attention Module (FCSSAM), to highlight the specific spatial regions of relevant channels while removing the irrelevant channels of the extracted features by the backbone. We evaluated the proposed approach on a publicly available chest X-ray dataset, using binary and multi-class classification setups. Our proposed method achieves accuracy rates of 97.15\% and 79.79\% for the binary and multi-class classification setups, respectively. The results of our proposed method are superior to state-of-the-art (SOTA) methods. The code of the proposed model will be available at: https://github.com/AyushRoy2001/FA-Net.
- Abstract(参考訳): 肺炎(Pneumonia)は、細菌、真菌、ウイルスによって引き起こされる呼吸器感染症である。
多くの人々、特に高い汚染レベル、不衛生な生活環境、過密化、医療インフラの不十分な発展途上国に影響を及ぼす。
肺炎は胸水を引き起こし、肺に液体が充満し呼吸困難を引き起こす。
早期診断は有効治療の確保と生存率の向上に不可欠である。
胸部X線像は肺炎の診断に最もよく用いられる方法である。
しかし,胸部X線検査は困難であり,主観的であった。
本研究では,胸部X線画像を用いた自動肺炎検出のためのコンピュータ支援診断システムを開発した。
DenseNet-121 と ResNet50 を2次分類(肺炎,正常)と多型分類(肺炎,ウイルス性肺炎,正常)のバックボーンとして使用した。
また,FCSSAM(Fuzzy Channel Selective Space Attention Module)と呼ばれるチャネル固有の空間アテンション機構を実装し,抽出した特徴の無関係なチャネルをバックボーンによって取り除きながら,関連するチャネルの特定の空間領域をハイライトする。
提案手法を,バイナリおよびマルチクラス分類設定を用いて,公開されている胸部X線データセット上で評価した。
提案手法は,2進法と多進法でそれぞれ97.15\%,79.79\%の精度を実現する。
提案手法は最先端技術(SOTA)法よりも優れている。
提案されたモデルのコードは、https://github.com/AyushRoy2001/FA-Net.comで公開される。
関連論文リスト
- Prediction of Pneumonia and COVID-19 Using Deep Neural Networks [0.0]
胸部X線画像から肺炎を予測する機械学習手法を提案する。
DenseNet121は他のモデルより優れており、精度は99.58%である。
論文 参考訳(メタデータ) (2023-08-20T21:26:37Z) - A Comparison Study of Deep CNN Architecture in Detecting of Pneumonia [0.0]
細菌やウイルスによる呼吸器感染症である肺炎は、多くの人々に影響を及ぼす。
画像に基づいて植物病を分類し、その性能をテストするディープ畳み込みニューラルネットワーク。
DenseNet201は、非常に少ないパラメータと妥当な計算時間で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-12-30T14:37:32Z) - BronchusNet: Region and Structure Prior Embedded Representation Learning
for Bronchus Segmentation and Classification [53.53758990624962]
そこで我々は,BronchusNetという組込みフレームワークに先立って,正確な気管支分析を行うための領域と構造を提案する。
気管支分画のための適応型ハード領域対応UNetを提案する。
気管支枝の分類には,ハイブリッドな点-ボクセルグラフ学習モジュールを提案する。
論文 参考訳(メタデータ) (2022-05-14T02:32:33Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Self-supervised deep convolutional neural network for chest X-ray
classification [0.0]
本研究では,ラベルのない胸部X線データセット上に事前訓練された自己監視型深部ニューラルネットワークを提案する。
4つの公開データセットで得られた結果は、私たちのアプローチが大量のラベル付きトレーニングデータを必要とせずに競争結果をもたらすことを示しています。
論文 参考訳(メタデータ) (2021-03-04T14:28:37Z) - Pneumothorax and chest tube classification on chest x-rays for detection
of missed pneumothorax [1.181048306817215]
胸部気胸および胸部気胸の治療によく用いられる各種の胸部管を画像分類パイプラインで検出する。
多段階のアルゴリズムは肺の分節と肺気胸の分類に基づいており、気胸を含む可能性が最も高いパッチの分類を含む。
論文 参考訳(メタデータ) (2020-11-14T18:06:06Z) - An ensemble-based approach by fine-tuning the deep transfer learning
models to classify pneumonia from chest X-ray images [0.0]
米国では、主に成人の25万人以上が肺炎と診断され、5万人が死亡している。
よく訓練された放射線科医の肺炎検出を見逃すことは珍しくなく、診断の正確性を改善する必要がある。
InceptionResNet、MobileNetV2、Xception、DenseNet201、ResNet152V2といった最先端のディープラーニングモデルを訓練、微調整して、肺炎を正確に分類しました。
論文 参考訳(メタデータ) (2020-11-11T04:50:06Z) - Contralaterally Enhanced Networks for Thoracic Disease Detection [120.60868136876599]
胸骨、肺野、気管支管など、胸部左右に類似した構造が多数存在する。
このような類似性は、広義の放射線学者の経験から、胸部X線における疾患の同定に利用することができる。
本稿では,病状提案の特徴表現を強化するために,対向的コンテキスト情報を活用するディープ・エンド・ツー・エンド・モジュールを提案する。
論文 参考訳(メタデータ) (2020-10-09T10:15:26Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
肺炎は小児の主要な死因であり、世界でも最多死亡率の1つである。
コンピュータ支援診断システムは診断精度を向上させる可能性を示した。
本研究では, 単発検出, 圧縮励起深部畳み込みニューラルネットワーク, 拡張, マルチタスク学習に基づく肺炎領域検出のための計算手法を開発した。
論文 参考訳(メタデータ) (2020-05-28T10:54:34Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
Anomaly Detection [86.81773672627406]
短期間のウイルス性肺炎の集団は、SARS、MERS、最近のCOVID-19のような流行やパンデミックのハービンガーである可能性がある。
胸部X線によるウイルス性肺炎の迅速かつ正確な検出は,大規模スクリーニングや流行予防に有用である。
ウイルス性肺炎はしばしば多彩な原因を持ち、X線画像に顕著な視覚的外観を示す。
論文 参考訳(メタデータ) (2020-03-27T11:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。