FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays
- URL: http://arxiv.org/abs/2406.15117v1
- Date: Fri, 21 Jun 2024 13:08:40 GMT
- Title: FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays
- Authors: Ayush Roy, Anurag Bhattacharjee, Diego Oliva, Oscar Ramos-Soto, Francisco J. Alvarez-Padilla, Ram Sarkar,
- Abstract summary: Pneumonia is a respiratory infection caused by bacteria, fungi, or viruses.
Early diagnosis is crucial to ensure effective treatment and increase survival rates.
We have developed a computer-aided diagnosis system for automatic pneumonia detection using chest X-ray images.
- Score: 28.319405767795047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pneumonia is a respiratory infection caused by bacteria, fungi, or viruses. It affects many people, particularly those in developing or underdeveloped nations with high pollution levels, unhygienic living conditions, overcrowding, and insufficient medical infrastructure. Pneumonia can cause pleural effusion, where fluids fill the lungs, leading to respiratory difficulty. Early diagnosis is crucial to ensure effective treatment and increase survival rates. Chest X-ray imaging is the most commonly used method for diagnosing pneumonia. However, visual examination of chest X-rays can be difficult and subjective. In this study, we have developed a computer-aided diagnosis system for automatic pneumonia detection using chest X-ray images. We have used DenseNet-121 and ResNet50 as the backbone for the binary class (pneumonia and normal) and multi-class (bacterial pneumonia, viral pneumonia, and normal) classification tasks, respectively. We have also implemented a channel-specific spatial attention mechanism, called Fuzzy Channel Selective Spatial Attention Module (FCSSAM), to highlight the specific spatial regions of relevant channels while removing the irrelevant channels of the extracted features by the backbone. We evaluated the proposed approach on a publicly available chest X-ray dataset, using binary and multi-class classification setups. Our proposed method achieves accuracy rates of 97.15\% and 79.79\% for the binary and multi-class classification setups, respectively. The results of our proposed method are superior to state-of-the-art (SOTA) methods. The code of the proposed model will be available at: https://github.com/AyushRoy2001/FA-Net.
Related papers
- Prediction of Pneumonia and COVID-19 Using Deep Neural Networks [0.0]
We propose machine-learning techniques for predicting Pneumonia from chest X-ray images.
DenseNet121 outperforms other models, achieving an accuracy rate of 99.58%.
arXiv Detail & Related papers (2023-08-20T21:26:37Z) - A Comparison Study of Deep CNN Architecture in Detecting of Pneumonia [0.0]
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people.
Deep convolutional neural network to classify plant diseases based on images and tested its performance.
DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time.
arXiv Detail & Related papers (2022-12-30T14:37:32Z) - BronchusNet: Region and Structure Prior Embedded Representation Learning
for Bronchus Segmentation and Classification [53.53758990624962]
We propose a region and structure prior embedded framework named BronchusNet to achieve accurate bronchial analysis.
For bronchus segmentation, we propose an adaptive hard region-aware UNet that incorporates multi-level prior guidance of hard pixel-wise samples.
For the classification of bronchial branches, we propose a hybrid point-voxel graph learning module.
arXiv Detail & Related papers (2022-05-14T02:32:33Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Self-supervised deep convolutional neural network for chest X-ray
classification [0.0]
We propose a self-supervised deep neural network that is pretrained on an unlabeled chest X-ray dataset.
The results obtained on four public datasets show that our approach yields competitive results without requiring large amounts of labeled training data.
arXiv Detail & Related papers (2021-03-04T14:28:37Z) - Pneumothorax and chest tube classification on chest x-rays for detection
of missed pneumothorax [1.181048306817215]
We present an image classification pipeline which detects pneumothorax and the various types of chest tubes that are commonly used to treat pneumothorax.
Our multi-stage algorithm is based on lung segmentation followed by pneumothorax classification, including classification of patches that are most likely to contain pneumothorax.
arXiv Detail & Related papers (2020-11-14T18:06:06Z) - An ensemble-based approach by fine-tuning the deep transfer learning
models to classify pneumonia from chest X-ray images [0.0]
More than 250,000 individuals in the United States, mainly adults, are diagnosed with pneumonia each year, and 50,000 die from the disease.
It is not uncommon to overlook pneumonia detection for a well-trained radiologist, which triggers the need for improvement in the diagnosis's accuracy.
We trained, fine-tuned the state-of-the-art deep learning models such as InceptionResNet, MobileNetV2, Xception, DenseNet201, and ResNet152V2 to classify pneumonia accurately.
arXiv Detail & Related papers (2020-11-11T04:50:06Z) - Contralaterally Enhanced Networks for Thoracic Disease Detection [120.60868136876599]
There exist many similar structures in the left and right parts of the chest, such as ribs, lung fields and bronchial tubes.
This kind of similarities can be used to identify diseases in chest X-rays, according to the experience of broad-certificated radiologists.
We propose a deep end-to-end module to exploit the contralateral context information for enhancing feature representations of disease proposals.
arXiv Detail & Related papers (2020-10-09T10:15:26Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
Anomaly Detection [86.81773672627406]
Clusters of viral pneumonia during a short period of time may be a harbinger of an outbreak or pandemic, like SARS, MERS, and recent COVID-19.
Rapid and accurate detection of viral pneumonia using chest X-ray can be significantly useful in large-scale screening and epidemic prevention.
Viral pneumonia often have diverse causes and exhibit notably different visual appearances on X-ray images.
arXiv Detail & Related papers (2020-03-27T11:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.