Self-supervised deep convolutional neural network for chest X-ray
classification
- URL: http://arxiv.org/abs/2103.03055v2
- Date: Fri, 5 Mar 2021 07:34:50 GMT
- Title: Self-supervised deep convolutional neural network for chest X-ray
classification
- Authors: Matej Gazda, Jakub Gazda, Jan Plavka, Peter Drotar
- Abstract summary: We propose a self-supervised deep neural network that is pretrained on an unlabeled chest X-ray dataset.
The results obtained on four public datasets show that our approach yields competitive results without requiring large amounts of labeled training data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chest radiography is a relatively cheap, widely available medical procedure
that conveys key information for making diagnostic decisions. Chest X-rays are
almost always used in the diagnosis of respiratory diseases such as pneumonia
or the recent COVID-19. In this paper, we propose a self-supervised deep neural
network that is pretrained on an unlabeled chest X-ray dataset. The learned
representations are transferred to downstream task - the classification of
respiratory diseases. The results obtained on four public datasets show that
our approach yields competitive results without requiring large amounts of
labeled training data.
Related papers
- FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays [28.319405767795047]
Pneumonia is a respiratory infection caused by bacteria, fungi, or viruses.
Early diagnosis is crucial to ensure effective treatment and increase survival rates.
We have developed a computer-aided diagnosis system for automatic pneumonia detection using chest X-ray images.
arXiv Detail & Related papers (2024-06-21T13:08:40Z) - Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New
Benchmark Study [75.05049024176584]
We present a benchmark study of the long-tailed learning problem in the specific domain of thorax diseases on chest X-rays.
We focus on learning from naturally distributed chest X-ray data, optimizing classification accuracy over not only the common "head" classes, but also the rare yet critical "tail" classes.
The benchmark consists of two chest X-ray datasets for 19- and 20-way thorax disease classification, containing classes with as many as 53,000 and as few as 7 labeled training images.
arXiv Detail & Related papers (2022-08-29T04:34:15Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Pneumonia Detection on Chest X-ray using Radiomic Features and
Contrastive Learning [26.031452674698787]
We propose a novel framework that leverages radiomics features and contrastive learning to detect pneumonia in chest X-ray.
Experiments on the RSNA Pneumonia Detection Challenge dataset show that our model achieves superior results to several state-of-the-art models.
arXiv Detail & Related papers (2021-01-12T02:52:24Z) - Contralaterally Enhanced Networks for Thoracic Disease Detection [120.60868136876599]
There exist many similar structures in the left and right parts of the chest, such as ribs, lung fields and bronchial tubes.
This kind of similarities can be used to identify diseases in chest X-rays, according to the experience of broad-certificated radiologists.
We propose a deep end-to-end module to exploit the contralateral context information for enhancing feature representations of disease proposals.
arXiv Detail & Related papers (2020-10-09T10:15:26Z) - RANDGAN: Randomized Generative Adversarial Network for Detection of
COVID-19 in Chest X-ray [0.0]
COVID-19 spread across the globe at an immense rate has left healthcare systems incapacitated to diagnose and test patients at the needed rate.
Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-rays.
In this study, we propose a randomized generative adversarial network (RANDGAN) that detects images of an unknown class (COVID-19) without the need for labels and training data.
arXiv Detail & Related papers (2020-10-06T15:58:09Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
We show that a deep learning model performing well when tested on the same dataset as training data starts to perform poorly when it is tested on a dataset from a different source.
By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation.
arXiv Detail & Related papers (2020-08-04T07:41:15Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
We present a novel deep learning approach for lung segmentation, a basic, but arduous task in the diagnostic pipeline.
Our method uses state-of-the-art fully convolutional neural networks in conjunction with an adversarial critic model.
It generalized well to CXR images of unseen datasets with different patient profiles, achieving a final DSCR of 97.5% on the JSRT dataset.
arXiv Detail & Related papers (2020-03-23T14:45:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.