Speech Emotion Recognition under Resource Constraints with Data Distillation
- URL: http://arxiv.org/abs/2406.15119v1
- Date: Fri, 21 Jun 2024 13:10:46 GMT
- Title: Speech Emotion Recognition under Resource Constraints with Data Distillation
- Authors: Yi Chang, Zhao Ren, Zhonghao Zhao, Thanh Tam Nguyen, Kun Qian, Tanja Schultz, Björn W. Schuller,
- Abstract summary: Speech emotion recognition (SER) plays a crucial role in human-computer interaction.
The emergence of edge devices in the Internet of Things presents challenges in constructing intricate deep learning models.
We propose a data distillation framework to facilitate efficient development of SER models in IoT applications.
- Score: 64.36799373890916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech emotion recognition (SER) plays a crucial role in human-computer interaction. The emergence of edge devices in the Internet of Things (IoT) presents challenges in constructing intricate deep learning models due to constraints in memory and computational resources. Moreover, emotional speech data often contains private information, raising concerns about privacy leakage during the deployment of SER models. To address these challenges, we propose a data distillation framework to facilitate efficient development of SER models in IoT applications using a synthesised, smaller, and distilled dataset. Our experiments demonstrate that the distilled dataset can be effectively utilised to train SER models with fixed initialisation, achieving performances comparable to those developed using the original full emotional speech dataset.
Related papers
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Text2Data: Low-Resource Data Generation with Textual Control [104.38011760992637]
Natural language serves as a common and straightforward control signal for humans to interact seamlessly with machines.
We propose Text2Data, a novel approach that utilizes unlabeled data to understand the underlying data distribution through an unsupervised diffusion model.
It undergoes controllable finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting.
arXiv Detail & Related papers (2024-02-08T03:41:39Z) - SudokuSens: Enhancing Deep Learning Robustness for IoT Sensing
Applications using a Generative Approach [8.647778968634595]
This paper introduces SudokuSens, a generative framework for automated generation of training data in machine-learning-based Internet-of-Things (IoT) applications.
The framework improves the robustness of resulting deep learning models, and is intended for IoT applications where data collection is expensive.
arXiv Detail & Related papers (2024-02-03T22:08:11Z) - Considerations for Ethical Speech Recognition Datasets [0.799536002595393]
We use automatic speech recognition as a case study and examine the properties that ethical speech datasets should possess towards responsible AI applications.
We showcase diversity issues, inclusion practices, and necessary considerations that can improve trained models.
We argue for the legal & privacy protection of data subjects, targeted data sampling corresponding to user demographics & needs, appropriate meta data that ensure explainability & accountability in cases of model failure.
arXiv Detail & Related papers (2023-05-03T12:38:14Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
We conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition.
We show that long-range dependencies in the speech signal are critical for emotion recognition.
Speed/rate augmentation offers the most robust performance gain across models.
arXiv Detail & Related papers (2022-11-09T17:27:03Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - On the Use of Interpretable Machine Learning for the Management of Data
Quality [13.075880857448059]
We propose the use of interpretable machine learning to deliver the features that are important to be based for any data processing activity.
Our aim is to secure data quality, at least, for those features that are detected as significant in the collected datasets.
arXiv Detail & Related papers (2020-07-29T08:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.