Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models
- URL: http://arxiv.org/abs/2407.20271v2
- Date: Wed, 9 Oct 2024 14:30:08 GMT
- Title: Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models
- Authors: Haoyu Tang, Ye Liu, Xukai Liu, Kai Zhang, Yanghai Zhang, Qi Liu, Enhong Chen,
- Abstract summary: Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
- Score: 49.043599241803825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in machine learning, particularly in Natural Language Processing (NLP), have led to the development of sophisticated models trained on extensive datasets, yet raising concerns about the potential leakage of sensitive information. In response, regulatory measures such as the European Union's General Data Protection Regulation (GDPR) have driven increasing interest in Machine Unlearning techniques, which enable models to selectively forget specific data entries. Early approaches primarily relied on pre-processing methods, while more recent research has shifted towards training-based unlearning techniques. Despite their effectiveness, most existing methods require access to the original training data, which is often inaccessible. Additionally, directly applying unlearning techniques bear the cost of undermining the model's expressive capabilities. To address these challenges, we introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components: A Knowledge Unlearning Induction module designed to remove specific knowledge through an unlearning loss; A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal; And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update. Experimental results demonstrate the efficacy of our ICU method in unlearning sensitive information while maintaining the model's overall performance, offering a promising solution for privacy-conscious machine learning applications.
Related papers
- Zero-shot Class Unlearning via Layer-wise Relevance Analysis and Neuronal Path Perturbation [11.174705227990241]
Machine unlearning is a technique that removes specific data influences from trained models without the need for extensive retraining.
This paper presents a novel approach to machine unlearning by employing Layer-wise Relevance Analysis and Neuronal Path Perturbation.
Our method balances machine unlearning performance and model utility by identifying and perturbing highly relevant neurons, thereby achieving effective unlearning.
arXiv Detail & Related papers (2024-10-31T07:37:04Z) - CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept [5.345828824625758]
We propose a novel amortized unlearning approach using codebook features and Sparse Autoencoders (SAEs)
By leveraging a bottleneck to decompose the activation space and regulate information flow, our method efficiently unlearns targeted information while preserving the model's performance on unrelated data.
arXiv Detail & Related papers (2024-10-08T10:26:22Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated learning (FL) offers a compelling framework for training large language models (LLMs)
We focus on machine unlearning, a crucial aspect for complying with privacy regulations like the Right to be Forgotten.
We explore various strategies that enable effective unlearning, such as perturbation techniques, model decomposition, and incremental learning.
arXiv Detail & Related papers (2024-06-14T08:40:58Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Efficient Knowledge Deletion from Trained Models through Layer-wise
Partial Machine Unlearning [2.3496568239538083]
This paper introduces a novel class of machine unlearning algorithms.
First method is partial amnesiac unlearning, integration of layer-wise pruning with amnesiac unlearning.
Second method assimilates layer-wise partial-updates into label-flipping and optimization-based unlearning.
arXiv Detail & Related papers (2024-03-12T12:49:47Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.