Solving the Product Breakdown Structure Problem with constrained QAOA
- URL: http://arxiv.org/abs/2406.15228v1
- Date: Fri, 21 Jun 2024 15:15:02 GMT
- Title: Solving the Product Breakdown Structure Problem with constrained QAOA
- Authors: René Zander, Raphael Seidel, Matteo Inajetovic, Niklas Steinmann, Matic Petrič,
- Abstract summary: We present a method for solving the industry relevant Product Breakdown Structure problem.
Our solution is based on constrained QAOA, which by construction never explores the part of the Hilbert space that represents solutions forbidden by the problem constraints.
We experimentally show that this approach has not only a very favorable scaling behavior, but also appears to suppress the negative effects of Barren Plateaus.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constrained optimization problems, where not all possible variable assignments are feasible solutions, comprise numerous practically relevant optimization problems such as the Traveling Salesman Problem (TSP), or portfolio optimization. Established methods such as quantum annealing or vanilla QAOA usually transform the problem statement into a QUBO (Quadratic Unconstrained Binary Optimization) form, where the constraints are enforced by auxiliary terms in the QUBO objective. Consequently, such approaches fail to utilize the additional structure provided by the constraints. In this paper, we present a method for solving the industry relevant Product Breakdown Structure problem. Our solution is based on constrained QAOA, which by construction never explores the part of the Hilbert space that represents solutions forbidden by the problem constraints. The size of the search space is thereby reduced significantly. We experimentally show that this approach has not only a very favorable scaling behavior, but also appears to suppress the negative effects of Barren Plateaus.
Related papers
- Convergence guarantee for linearly-constrained combinatorial optimization with a quantum alternating operator ansatz [0.0]
We present a quantum alternating operator ansatz (QAOA$+$) that solves a class of linearly constrained optimization problems.
For problems in this class, we devise circuits that provably converge to the optimal solution as the number of circuit layers increases.
This analysis extends QAOA$+$ performance guarantees to a more general set of linearly-constrained problems and provides tools for future generalizations.
arXiv Detail & Related papers (2024-09-27T15:23:47Z) - Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory [53.64687146666141]
Recent paper introduced an analytical method for calculating the channel capacity without the need for iteration.
We turn our attention to the reverse em-problem, proposed by Toyota.
We derive a non-iterative formula for the reverse em-problem.
arXiv Detail & Related papers (2024-03-14T10:20:28Z) - Hybrid Quantum Algorithms integrating QAOA, Penalty Dephasing and Zeno
Effect for Solving Binary Optimization Problems with Multiple Constraints [5.259170150405252]
This paper presents a hybrid framework that combines the use of standard Ising Hamiltonians to solve a subset of the constraints.
The resolution of these non-Ising constraints is achieved through either penalty dephasing or the quantum Zeno effect.
arXiv Detail & Related papers (2023-05-14T03:49:10Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Constrained mixers for the quantum approximate optimization algorithm [55.41644538483948]
We present a framework for constructing mixing operators that restrict the evolution to a subspace of the full Hilbert space.
We generalize the "XY"-mixer designed to preserve the subspace of "one-hot" states to the general case of subspaces given by a number of computational basis states.
Our analysis also leads to valid Trotterizations for "XY"-mixer with fewer CX gates than is known to date.
arXiv Detail & Related papers (2022-03-11T17:19:26Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Modeling Linear Inequality Constraints in Quadratic Binary Optimization
for Variational Quantum Eigensolver [0.0]
This paper introduces the use of tailored variational forms for variational quantum eigensolver.
Four constraints that usually appear in several optimization problems are modeled.
The main advantage of the proposed methodology is that the number of parameters on the variational form remain constant.
arXiv Detail & Related papers (2020-07-26T23:36:22Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - A Constraint Driven Solution Model for Discrete Domains with a Case
Study of Exam Timetabling Problems [6.788217433800101]
A variation of Intelligent constraint handling evolutionary algorithm (ICHEA) has been demonstrated to solve benchmark exam timetabling problems.
ICHEA first uses its inter-marriage crossover operator to satisfy all the given constraints incrementally and then uses combination of traditional and enhanced operators to optimize the solution.
arXiv Detail & Related papers (2020-02-08T06:53:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.