Synthetic Lyrics Detection Across Languages and Genres
- URL: http://arxiv.org/abs/2406.15231v2
- Date: Tue, 17 Dec 2024 20:50:40 GMT
- Title: Synthetic Lyrics Detection Across Languages and Genres
- Authors: Yanis Labrak, Markus Frohmann, Gabriel Meseguer-Brocal, Elena V. Epure,
- Abstract summary: Large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity.
Previous research has explored content detection in various domains, but no work has focused on the modality of lyrics in music.
We curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists.
- Score: 4.987546582439803
- License:
- Abstract: In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the modality of lyrics in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We conducted a comprehensive evaluation of existing synthetic text detection features on this novel data type. Additionally, we explored strategies to adjust the best feature for lyrics using unsupervised adaptation. Adhering to constraints of our application domain, we investigated cross-lingual generalization, data scalability, robustness to language combinations, and the impact of genre novelty in a few-shot detection scenario. Our findings show promising results within language families and similar genres, yet challenges persist with lyrics in languages that exhibit distinct semantic structures.
Related papers
- Multi-label Cross-lingual automatic music genre classification from lyrics with Sentence BERT [0.13654846342364302]
We present a multi-label, cross-lingual genre classification system based on multilingual sentence embeddings generated by sBERT.
Using a bilingual Portuguese-English dataset with eight overlapping genres, we demonstrate the system's ability to train on lyrics in one language and predict genres in another.
arXiv Detail & Related papers (2025-01-07T13:22:35Z) - Enriching Music Descriptions with a Finetuned-LLM and Metadata for Text-to-Music Retrieval [7.7464988473650935]
Text-to-Music Retrieval plays a pivotal role in content discovery within extensive music databases.
This paper proposes an improved Text-to-Music Retrieval model, denoted as TTMR++.
arXiv Detail & Related papers (2024-10-04T09:33:34Z) - LyCon: Lyrics Reconstruction from the Bag-of-Words Using Large Language Models [1.1510009152620668]
Our study introduces a novel method for generating copyright-free lyrics from publicly available Bag-of-Words datasets.
We have compiled and made available a dataset of reconstructed lyrics, LyCon, aligned with metadata from renowned sources.
We believe that the integration of metadata such as mood annotations or genres enables a variety of academic experiments on lyrics.
arXiv Detail & Related papers (2024-08-27T03:01:48Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
We are inspired by how musicians compose music not just from a movie script, but also through visualizations.
We propose MeLFusion, a model that can effectively use cues from a textual description and the corresponding image to synthesize music.
Our exhaustive experimental evaluation suggests that adding visual information to the music synthesis pipeline significantly improves the quality of generated music.
arXiv Detail & Related papers (2024-06-07T06:38:59Z) - Syllable-level lyrics generation from melody exploiting character-level
language model [14.851295355381712]
We propose to exploit fine-tuning character-level language models for syllable-level lyrics generation from symbolic melody.
In particular, our method endeavors to incorporate linguistic knowledge of the language model into the beam search process of a syllable-level Transformer generator network.
arXiv Detail & Related papers (2023-10-02T02:53:29Z) - LyricWhiz: Robust Multilingual Zero-shot Lyrics Transcription by Whispering to ChatGPT [48.28624219567131]
We introduce LyricWhiz, a robust, multilingual, and zero-shot automatic lyrics transcription method.
We use Whisper, a weakly supervised robust speech recognition model, and GPT-4, today's most performant chat-based large language model.
Our experiments show that LyricWhiz significantly reduces Word Error Rate compared to existing methods in English.
arXiv Detail & Related papers (2023-06-29T17:01:51Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
We generate complete and semantically consistent symbolic music scores from text descriptions.
We explore the efficacy of using publicly available checkpoints for natural language processing in the task of text-to-music generation.
Our experimental results show that the improvement from using pre-trained checkpoints is statistically significant in terms of BLEU score and edit distance similarity.
arXiv Detail & Related papers (2022-11-21T07:19:17Z) - Bridging Music and Text with Crowdsourced Music Comments: A
Sequence-to-Sequence Framework for Thematic Music Comments Generation [18.2750732408488]
We exploit the crowd-sourced music comments to construct a new dataset and propose a sequence-to-sequence model to generate text descriptions of music.
To enhance the authenticity and thematicity of generated texts, we propose a discriminator and a novel topic evaluator.
arXiv Detail & Related papers (2022-09-05T14:51:51Z) - Genre-conditioned Acoustic Models for Automatic Lyrics Transcription of
Polyphonic Music [73.73045854068384]
We propose to transcribe the lyrics of polyphonic music using a novel genre-conditioned network.
The proposed network adopts pre-trained model parameters, and incorporates the genre adapters between layers to capture different genre peculiarities for lyrics-genre pairs.
Our experiments show that the proposed genre-conditioned network outperforms the existing lyrics transcription systems.
arXiv Detail & Related papers (2022-04-07T09:15:46Z) - Youling: an AI-Assisted Lyrics Creation System [72.00418962906083]
This paper demonstrates textitYouling, an AI-assisted lyrics creation system, designed to collaborate with music creators.
In the lyrics generation process, textitYouling supports traditional one pass full-text generation mode as well as an interactive generation mode.
The system also provides a revision module which enables users to revise undesired sentences or words of lyrics repeatedly.
arXiv Detail & Related papers (2022-01-18T03:57:04Z) - Melody-Conditioned Lyrics Generation with SeqGANs [81.2302502902865]
We propose an end-to-end melody-conditioned lyrics generation system based on Sequence Generative Adversarial Networks (SeqGAN)
We show that the input conditions have no negative impact on the evaluation metrics while enabling the network to produce more meaningful results.
arXiv Detail & Related papers (2020-10-28T02:35:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.