Multi-label Cross-lingual automatic music genre classification from lyrics with Sentence BERT
- URL: http://arxiv.org/abs/2501.03769v1
- Date: Tue, 07 Jan 2025 13:22:35 GMT
- Title: Multi-label Cross-lingual automatic music genre classification from lyrics with Sentence BERT
- Authors: Tiago Fernandes Tavares, Fabio José Ayres,
- Abstract summary: We present a multi-label, cross-lingual genre classification system based on multilingual sentence embeddings generated by sBERT.
Using a bilingual Portuguese-English dataset with eight overlapping genres, we demonstrate the system's ability to train on lyrics in one language and predict genres in another.
- Score: 0.13654846342364302
- License:
- Abstract: Music genres are shaped by both the stylistic features of songs and the cultural preferences of artists' audiences. Automatic classification of music genres using lyrics can be useful in several applications such as recommendation systems, playlist creation, and library organization. We present a multi-label, cross-lingual genre classification system based on multilingual sentence embeddings generated by sBERT. Using a bilingual Portuguese-English dataset with eight overlapping genres, we demonstrate the system's ability to train on lyrics in one language and predict genres in another. Our approach outperforms the baseline approach of translating lyrics and using a bag-of-words representation, improving the genrewise average F1-Score from 0.35 to 0.69. The classifier uses a one-vs-all architecture, enabling it to assign multiple genre labels to a single lyric. Experimental results reveal that dataset centralization notably improves cross-lingual performance. This approach offers a scalable solution for genre classification across underrepresented languages and cultural domains, advancing the capabilities of music information retrieval systems.
Related papers
- CLaMP 2: Multimodal Music Information Retrieval Across 101 Languages Using Large Language Models [51.03510073676228]
CLaMP 2 is a system compatible with 101 languages for music information retrieval.
By leveraging large language models, we obtain refined and consistent multilingual descriptions at scale.
CLaMP 2 achieves state-of-the-art results in both multilingual semantic search and music classification across modalities.
arXiv Detail & Related papers (2024-10-17T06:43:54Z) - Synthetic Lyrics Detection Across Languages and Genres [4.987546582439803]
Large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity.
Previous research has explored content detection in various domains, but no work has focused on the modality of lyrics in music.
We curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists.
arXiv Detail & Related papers (2024-06-21T15:19:21Z) - LyricWhiz: Robust Multilingual Zero-shot Lyrics Transcription by Whispering to ChatGPT [48.28624219567131]
We introduce LyricWhiz, a robust, multilingual, and zero-shot automatic lyrics transcription method.
We use Whisper, a weakly supervised robust speech recognition model, and GPT-4, today's most performant chat-based large language model.
Our experiments show that LyricWhiz significantly reduces Word Error Rate compared to existing methods in English.
arXiv Detail & Related papers (2023-06-29T17:01:51Z) - Re-creation of Creations: A New Paradigm for Lyric-to-Melody Generation [158.54649047794794]
Re-creation of Creations (ROC) is a new paradigm for lyric-to-melody generation.
ROC achieves good lyric-melody feature alignment in lyric-to-melody generation.
arXiv Detail & Related papers (2022-08-11T08:44:47Z) - Genre-conditioned Acoustic Models for Automatic Lyrics Transcription of
Polyphonic Music [73.73045854068384]
We propose to transcribe the lyrics of polyphonic music using a novel genre-conditioned network.
The proposed network adopts pre-trained model parameters, and incorporates the genre adapters between layers to capture different genre peculiarities for lyrics-genre pairs.
Our experiments show that the proposed genre-conditioned network outperforms the existing lyrics transcription systems.
arXiv Detail & Related papers (2022-04-07T09:15:46Z) - Complex Network-Based Approach for Feature Extraction and Classification
of Musical Genres [0.0]
This work presents a feature extraction method for the automatic classification of musical genres.
The proposed method initially converts the musics into sequences of musical notes and then maps the sequences as complex networks.
Topological measurements are extracted to characterize the network topology, which composes a feature vector that applies to the classification of musical genres.
arXiv Detail & Related papers (2021-10-09T22:23:33Z) - Modeling the Music Genre Perception across Language-Bound Cultures [10.223656553455003]
We study the feasibility of obtaining relevant cross-lingual, culture-specific music genre annotations.
We show that unsupervised cross-lingual music genre annotation is feasible with high accuracy.
We introduce a new, domain-dependent cross-lingual corpus to benchmark state of the art multilingual pre-trained embedding models.
arXiv Detail & Related papers (2020-10-13T12:20:32Z) - Multilingual Music Genre Embeddings for Effective Cross-Lingual Music
Item Annotation [9.709229853995987]
Cross-lingual music genre translation is possible without relying on a parallel corpus.
By learning multilingual music genre embeddings, we enable cross-lingual music genre translation without relying on a parallel corpus.
Our method is effective in translating music genres across tag systems in multiple languages.
arXiv Detail & Related papers (2020-09-16T15:39:04Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
We present a semi-supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations.
We observe significant gains in effectiveness on document and intent classification for a diverse set of languages.
arXiv Detail & Related papers (2020-07-29T19:38:35Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z) - Brazilian Lyrics-Based Music Genre Classification Using a BLSTM Network [1.9116784879310027]
We present a novel approach for automatic classifying musical genre in Brazilian music using only the song lyrics.
We construct a dataset of 138,368 Brazilian song lyrics distributed in 14 genres.
Some genres like "gospel", "funk-carioca" and "sertanejo" can be defined as the most distinct and easy to classify.
arXiv Detail & Related papers (2020-03-06T05:39:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.