Quantum battery supercharging via counter-diabatic dynamics
- URL: http://arxiv.org/abs/2406.15274v2
- Date: Fri, 6 Sep 2024 14:03:02 GMT
- Title: Quantum battery supercharging via counter-diabatic dynamics
- Authors: L. F. C. de Moraes, Alan C. Duriez, A. Saguia, Alan C. Santos, Marcelo S. Sarandy,
- Abstract summary: We introduce a counter-diabatic approach for deriving Hamiltonians for superchargable quantum batteries.
We show that QB supercharging can be achieved by $O(n)$ terms of multipartite connections.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a counter-diabatic approach for deriving Hamiltonians modeling superchargable quantum batteries (QBs). A necessary requirement for the supercharging process is the existence of multipartite interactions among the cells of the battery. Remarkably, this condition may be insufficient no matter the number of multipartite terms in the Hamiltonian. We analytically illustrate this kind of insufficiency through a model of QB based on the adiabatic version for the Grover search problem. On the other hand, we provide QB supercharging with just a mild number of global connections in the system. To this aim, we consider a spin-$1/2$ chain with $n$ sites in the presence of Ising multipartite interactions. We then show that, by considering the validity of the adiabatic approximation and by adding $n$ terms of $(n-1)$-site interactions, we can achieve a Hamiltonian exhibiting maximum QB power, with respect to a normalized evolution time, growing quadratically with $n$. Therefore, supercharging can be achieved by $O(n)$ terms of multipartite connections. The time constraint required by the adiabatic approximation can be surpassed by considering a counter-diabatic expansion in terms of the gauge potential for the original Hamiltonian, with a limited $O(n)$ many-body interaction terms assured via a Floquet approach for the counter-diabatic implementation.
Related papers
- Prethermal Floquet time crystals in chiral multiferroic chains and applications as quantum sensors of AC fields [41.94295877935867]
We study the emergence of prethermal Floquet Time Crystal (pFTC) in disordered multiferroic chains.
We derive the phase diagram of the model, characterizing the magnetization, entanglement, and coherence dynamics of the system.
We also explore the application of the pFTC as quantum sensors of AC fields.
arXiv Detail & Related papers (2024-10-23T03:15:57Z) - Rate Function Modelling of Quantum Many-Body Adiabaticity [0.0]
We study the dynamics of adiabatic processes for interacting quantum many-body systems.
We control and define the notion of adiabaticity in many-body systems.
arXiv Detail & Related papers (2024-02-27T11:10:33Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Quantum annealing showing an exponentially small success probability despite a constant energy gap with polynomial energy [0.0]
Adiabatic condition consists of two parts: an energy gap and a transition matrix.
The success probability of QA is considered to decrease exponentially owing to the exponentially decreasing energy gap.
We numerically show the scaling of the computational cost is quadratically improved compared to the conventional QA.
arXiv Detail & Related papers (2022-12-20T04:43:40Z) - Extended Dicke quantum battery with interatomic interactions and driving
field [0.0]
We investigate the charging process of quantum battery systems in an extended Dicke model with both atomic interactions and an external driving field.
For the maximum charging power, we obtain the quantum advantage of the QB, which approximately satisfies a superlinear scaling relation $P_maxpropto Nalpha$.
In the ultra-strong coupling regime, the atomic interaction can lead to a faster battery charging, and the quantum advantage $alpha = 1.88$ can be achieved.
arXiv Detail & Related papers (2021-12-25T12:18:15Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum adiabatic theorem for unbounded Hamiltonians with a cutoff and
its application to superconducting circuits [0.0]
We present a new quantum adiabatic theorem that allows one to rigorously bound the adiabatic timescale for a variety of systems.
Our bound is geared towards the qubit approximation of superconducting circuits.
arXiv Detail & Related papers (2020-11-16T17:25:48Z) - Resilience of the superradiant phase against $\mathbf {A^2}$ effects in
the quantum Rabi dimer [0.0]
We study the quantum criticality of a two-site model combining quantum Rabi models with hopping interaction.
We find that the model allows the appearance of a superradiant quantum phase transition (QPT) even in the presence of strong $mathbfA2$ terms.
Our work provides a way to the study of phase transitions in presence of the $mathbfA2$ terms and offers the prospect of investigating quantum-criticality physics and quantum devices in many-body systems.
arXiv Detail & Related papers (2020-03-03T04:14:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.