論文の概要: Cross-Modality Safety Alignment
- arxiv url: http://arxiv.org/abs/2406.15279v1
- Date: Fri, 21 Jun 2024 16:14:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:03:22.942238
- Title: Cross-Modality Safety Alignment
- Title(参考訳): クロスモダリティ安全アライメント
- Authors: Siyin Wang, Xingsong Ye, Qinyuan Cheng, Junwen Duan, Shimin Li, Jinlan Fu, Xipeng Qiu, Xuanjing Huang,
- Abstract要約: 我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
以上の結果から, クローズドおよびオープンソース両方のLVLMの安全性上の重大な脆弱性が明らかとなり, 複雑で現実的なシナリオを確実に解釈し, 応答する上で, 現行モデルが不十分であることが示唆された。
- 参考スコア(独自算出の注目度): 73.8765529028288
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Artificial General Intelligence (AGI) becomes increasingly integrated into various facets of human life, ensuring the safety and ethical alignment of such systems is paramount. Previous studies primarily focus on single-modality threats, which may not suffice given the integrated and complex nature of cross-modality interactions. We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment. Specifically, it considers cases where single modalities are safe independently but could potentially lead to unsafe or unethical outputs when combined. To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations. Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, such as GPT-4V and LLaVA, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
- Abstract(参考訳): 人工知能(AGI)が人間の生活の様々な側面に統合されるにつれて、そのようなシステムの安全性と倫理的整合性が最優先される。
従来の研究は主に単一モダリティの脅威に焦点が当てられていたが、これは相互モダリティ相互作用の統合的で複雑な性質を考えると十分ではないかもしれない。
我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
具体的には、単一のモダリティが独立して安全であるが、組み合わせると安全でない、あるいは非倫理的なアウトプットにつながる可能性がある場合を考える。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
GPT-4V や LLaVA などのオープンソース LVLM の安全性の重大な脆弱性が明らかになった。
関連論文リスト
- AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
AIリスクマネジメントの利害関係者は、安全とセキュリティの間のニュアンス、シナジー、相互作用を意識すべきである、と私たちは主張する。
我々は、AIの安全性とAIのセキュリティの違いと相互作用を明らかにするために、統一された参照フレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-29T21:00:47Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
大規模言語モデル(LLM)は、自然言語処理アプリケーションにおいて、ますます重要な役割を担っている。
本稿では,SODE(Safety and Over-Defensiveness Evaluation)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-12-30T17:37:06Z) - Safety-Gymnasium: A Unified Safe Reinforcement Learning Benchmark [13.082034905010286]
本稿では,単一エージェントとマルチエージェントの両方のシナリオにおいて,安全クリティカルなタスクを含む環境スイートであるSafety-Gymnasiumを提案する。
Safe Policy Optimization (SafePO) という,最先端のSafeRLアルゴリズム16種からなるアルゴリズムのライブラリを提供する。
論文 参考訳(メタデータ) (2023-10-19T08:19:28Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Probabilistic Counterexample Guidance for Safer Reinforcement Learning
(Extended Version) [1.279257604152629]
セーフサーベイは、安全クリティカルなシナリオにおける強化学習(RL)の限界に対処することを目的としている。
外部知識を取り入れたり、センサデータを使って安全でない状態の探索を制限する方法はいくつか存在する。
本稿では,安全要件の反例によるトレーニングを指導することで,安全な探査の課題をターゲットにする。
論文 参考訳(メタデータ) (2023-07-10T22:28:33Z) - Synergistic Redundancy: Towards Verifiable Safety for Autonomous
Vehicles [10.277825331268179]
我々は、自律走行車(AV)のような複雑なサイバー物理システムのための安全アーキテクチャとして、シナジスティック冗長性(SR)を提案する。
SRは、システムのミッションと安全タスクを分離することで、特定の障害に対する検証可能な安全保証を提供する。
ミッション層との密接な調整により、システム内の安全クリティカルな障害を容易かつ早期に検出することができる。
論文 参考訳(メタデータ) (2022-09-04T23:52:03Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
安全運転の最大確率を学習するモデルフリー安全仕様法を提案する。
提案手法は, 各政策改善段階を抑制するための安全な政策に関して, リャプノフ関数を構築する。
安全集合と呼ばれる安全な操作範囲を決定する一連の安全なポリシーを導出する。
論文 参考訳(メタデータ) (2020-02-24T09:20:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。