PID: Prompt-Independent Data Protection Against Latent Diffusion Models
- URL: http://arxiv.org/abs/2406.15305v1
- Date: Fri, 14 Jun 2024 11:56:42 GMT
- Title: PID: Prompt-Independent Data Protection Against Latent Diffusion Models
- Authors: Ang Li, Yichuan Mo, Mingjie Li, Yisen Wang,
- Abstract summary: Given the vast amount of personal images accessible online, this capability raises critical concerns about civil privacy.
We propose a simple yet effective method called textbfPrompt-Independent Defense (PID) to safeguard privacy against LDMs.
- Score: 32.1299481922554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The few-shot fine-tuning of Latent Diffusion Models (LDMs) has enabled them to grasp new concepts from a limited number of images. However, given the vast amount of personal images accessible online, this capability raises critical concerns about civil privacy. While several previous defense methods have been developed to prevent such misuse of LDMs, they typically assume that the textual prompts used by data protectors exactly match those employed by data exploiters. In this paper, we first empirically demonstrate that breaking this assumption, i.e., in cases where discrepancies exist between the textual conditions used by protectors and exploiters, could substantially reduce the effectiveness of these defenses. Furthermore, considering the visual encoder's independence from textual prompts, we delve into the visual encoder and thoroughly investigate how manipulating the visual encoder affects the few-shot fine-tuning process of LDMs. Drawing on these insights, we propose a simple yet effective method called \textbf{Prompt-Independent Defense (PID)} to safeguard privacy against LDMs. We show that PID can act as a strong privacy shield on its own while requiring significantly less computational power. We believe our studies, along with the comprehensive understanding and new defense method, provide a notable advance toward reliable data protection against LDMs.
Related papers
- CAT: Contrastive Adversarial Training for Evaluating the Robustness of Protective Perturbations in Latent Diffusion Models [15.363134355805764]
Adversarial examples as protective perturbations have been developed to defend against unauthorized data usage.
We propose the Contrastive Adversarial Training (CAT) utilizing adapters as an adaptive attack against these protection methods.
arXiv Detail & Related papers (2025-02-11T03:35:35Z) - ExpShield: Safeguarding Web Text from Unauthorized Crawling and Language Modeling Exploitation [17.71790411163849]
We propose a proactive self-guard mechanism that embeds invisible perturbations into text to limit misuse in model training.
This approach enables data owners to protect sensitive content directly, without relying on a third-party to perform defense.
arXiv Detail & Related papers (2024-12-30T17:52:02Z) - Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
We build a new laRge-scale Adervsarial images dataset with Diverse hArmful Responses (RADAR)
We then develop a novel iN-time Embedding-based AdveRSarial Image DEtection (NEARSIDE) method, which exploits a single vector that distilled from the hidden states of Visual Language Models (VLMs) to achieve the detection of adversarial images against benign ones in the input.
arXiv Detail & Related papers (2024-10-30T10:33:10Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.
We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.
We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Pixel is a Barrier: Diffusion Models Are More Adversarially Robust Than We Think [14.583181596370386]
Adversarial examples for diffusion models are widely used as solutions for safety concerns.
This may mislead us to think that the diffusion models are vulnerable to adversarial attacks like most deep models.
In this paper, we show novel findings that: even though gradient-based white-box attacks can be used to attack the LDMs, they fail to attack PDMs.
arXiv Detail & Related papers (2024-04-20T08:28:43Z) - Visual Privacy Auditing with Diffusion Models [52.866433097406656]
We propose a reconstruction attack based on diffusion models (DMs) that assumes adversary access to real-world image priors.
We show that (1) real-world data priors significantly influence reconstruction success, (2) current reconstruction bounds do not model the risk posed by data priors well, and (3) DMs can serve as effective auditing tools for visualizing privacy leakage.
arXiv Detail & Related papers (2024-03-12T12:18:55Z) - Silent Guardian: Protecting Text from Malicious Exploitation by Large Language Models [63.91178922306669]
We introduce Silent Guardian, a text protection mechanism against large language models (LLMs)
By carefully modifying the text to be protected, TPE can induce LLMs to first sample the end token, thus directly terminating the interaction.
We show that SG can effectively protect the target text under various configurations and achieve almost 100% protection success rate in some cases.
arXiv Detail & Related papers (2023-12-15T10:30:36Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Toward effective protection against diffusion based mimicry through
score distillation [15.95715097030366]
Efforts have been made to add perturbations to protect images from diffusion-based mimicry pipelines.
Most of the existing methods are too ineffective and even impractical to be used by individual users.
We present novel findings on attacking latent diffusion models and propose new plug-and-play strategies for more effective protection.
arXiv Detail & Related papers (2023-10-02T18:56:12Z) - Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
We advocate MDP, a lightweight, pluggable, and effective defense for PLMs as few-shot learners.
We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness.
arXiv Detail & Related papers (2023-09-23T04:41:55Z) - The Devil's Advocate: Shattering the Illusion of Unexploitable Data
using Diffusion Models [14.018862290487617]
We show that a carefully designed denoising process can counteract the data-protecting perturbations.
Our approach, called AVATAR, delivers state-of-the-art performance against a suite of recent availability attacks.
arXiv Detail & Related papers (2023-03-15T10:20:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.