Automated Parking Planning with Vision-Based BEV Approach
- URL: http://arxiv.org/abs/2406.15430v1
- Date: Fri, 24 May 2024 15:26:09 GMT
- Title: Automated Parking Planning with Vision-Based BEV Approach
- Authors: Yuxuan Zhao,
- Abstract summary: This paper proposes an improved automated parking algorithm based on the A* algorithm, integrating vehicle kinematic models, function optimization, bidirectional search, and Bezier curve optimization.
Compared to traditional algorithms, this approach demonstrates reduced computation time with more challenging collision-risk test cases and improved performance in comfort metrics.
- Score: 10.936433798200907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated Valet Parking (AVP) is a crucial component of advanced autonomous driving systems, focusing on the endpoint task within the "human-vehicle interaction" process to tackle the challenges of the "last mile".The perception module of the automated parking algorithm has evolved from local perception using ultrasonic radar and global scenario precise map matching for localization to a high-level map-free Birds Eye View (BEV) perception solution.The BEV scene places higher demands on the real-time performance and safety of automated parking planning tasks. This paper proposes an improved automated parking algorithm based on the A* algorithm, integrating vehicle kinematic models, heuristic function optimization, bidirectional search, and Bezier curve optimization to enhance the computational speed and real-time capabilities of the planning algorithm.Numerical optimization methods are employed to generate the final parking trajectory, ensuring the safety of the parking path. The proposed approach is experimentally validated in the commonly used industrial CARLA-ROS joint simulation environment. Compared to traditional algorithms, this approach demonstrates reduced computation time with more challenging collision-risk test cases and improved performance in comfort metrics.
Related papers
- Automatic parking planning control method based on improved A* algorithm [10.936433798200907]
This paper proposes an improved automatic parking planning algorithm based on the A* algorithm, and uses Model Predictive Control (MPC) as the control module for automatic parking.
The algorithm enhances the planning real-time performance by optimizing functions, binary heap optimization, and bidirectional search.
MPC is used to output control commands to drive the car along the planned trajectory.
arXiv Detail & Related papers (2024-05-24T15:26:07Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
Trajectory planning aims to produce a globally optimal route for Autonomous Passenger Vehicles.
Existing implementations utilizing the vehicle bicycle kinematic model may not guarantee controllable trajectories.
We augment this model by higher-order terms, including the first and second-order derivatives of curvature and longitudinal jerk.
arXiv Detail & Related papers (2023-09-25T22:30:18Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - An automatic differentiation system for the age of differential privacy [65.35244647521989]
Tritium is an automatic differentiation-based sensitivity analysis framework for differentially private (DP) machine learning (ML)
We introduce Tritium, an automatic differentiation-based sensitivity analysis framework for differentially private (DP) machine learning (ML)
arXiv Detail & Related papers (2021-09-22T08:07:42Z) - Model-based Decision Making with Imagination for Autonomous Parking [50.41076449007115]
The proposed algorithm consists of three parts: an imaginative model for anticipating results before parking, an improved rapid-exploring random tree (RRT) and a path smoothing module.
Our algorithm is based on a real kinematic vehicle model; which makes it more suitable for algorithm application on real autonomous cars.
In order to evaluate the algorithm's effectiveness, we have compared our algorithm with traditional RRT, within three different parking scenarios.
arXiv Detail & Related papers (2021-08-25T18:24:34Z) - Attention-based Neural Network for Driving Environment Complexity
Perception [123.93460670568554]
This paper proposes a novel attention-based neural network model to predict the complexity level of the surrounding driving environment.
It consists of a Yolo-v3 object detection algorithm, a heat map generation algorithm, CNN-based feature extractors, and attention-based feature extractors.
The proposed attention-based network achieves 91.22% average classification accuracy to classify the surrounding environment complexity.
arXiv Detail & Related papers (2021-06-21T17:27:11Z) - An Automated Machine Learning (AutoML) Method for Driving Distraction
Detection Based on Lane-Keeping Performance [2.3951613028271397]
This study proposes a domain-specific automated machine learning (AutoML) to self-learn the optimal models to detect distraction.
The proposed AutoGBM method is found to be reliable and promising to predict phone-related driving distractions.
The purposed AutoGBM not only produces better performance with fewer features; but also provides data-driven insights about system design.
arXiv Detail & Related papers (2021-03-10T12:37:18Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z) - Experience-Based Heuristic Search: Robust Motion Planning with Deep
Q-Learning [0.0]
We show how experiences in the form of a Deep Q-Network can be integrated as optimal policy in a search algorithm.
Our method may encourage further investigation of the applicability of reinforcement-learning-based planning in the field of self-driving vehicles.
arXiv Detail & Related papers (2021-02-05T12:08:11Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.