Quantum Diamond Microscope for Narrowband Magnetic Imaging with High Spatial and Spectral Resolution
- URL: http://arxiv.org/abs/2406.15450v1
- Date: Thu, 6 Jun 2024 15:57:53 GMT
- Title: Quantum Diamond Microscope for Narrowband Magnetic Imaging with High Spatial and Spectral Resolution
- Authors: Zechuan Yin, Jiashen Tang, Connor A. Hart, John W. Blanchard, Xinyan Xiang, Saipriya Satyajit, Smriti Bhalerao, Tao Tao, Stephen J. DeVience, Ronald L. Walsworth,
- Abstract summary: The quantum diamond microscope (QDM) is a recently developed technology for near-field imaging of magnetic fields with micron-scale spatial resolution.
The present instrument has spatial resolution $approx2,mathrmmu m$, field-of-view $approx300times300,mathrmmu m2$, and per-pixel sensitivity to narrowband fields $sim1,$nT$cdot$Hz$-1/2$.
- Score: 1.7728122624261802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum diamond microscope (QDM) is a recently developed technology for near-field imaging of magnetic fields with micron-scale spatial resolution. In the present work, we integrate a QDM with a narrowband measurement protocol and a lock-in camera; and demonstrate imaging of radiofrequency (RF) magnetic field patterns produced by microcoils, with spectral resolution $\approx1$\,Hz. This RF-QDM provides multi-frequency imaging with a central detection frequency that is easily tunable over the MHz-scale, allowing spatial discrimination of both crowded spectral peaks and spectrally well-separated signals. The present instrument has spatial resolution $\approx2\,\mathrm{\mu m}$, field-of-view $\approx300\times300\,\mathrm{\mu m^2}$, and per-pixel sensitivity to narrowband fields $\sim{1}\,$nT$\cdot$Hz$^{-1/2}$. Spatial noise can be reduced to the picotesla scale by signal averaging and/or spatial binning. The RF-QDM enables simultaneous imaging of the amplitude, frequency, and phase of narrowband magnetic field patterns at the micron-scale, with potential applications in real-space NMR imaging, AC susceptibility mapping, impedance tomography, analysis of electronic circuits, and spatial eddy-current-based inspection.
Related papers
- Quantum Frequency Mixing using an NV Diamond Microscope [4.010160960688796]
We use quantum frequency mixing to generate wide-field magnetic images of test structures driven by alternating currents up to 70 MHz.
With further improvements, this approach could find utility in hyperspectral imaging for electronics power spectrum analysis, electronics diagnostics and troubleshooting, and quantum computing hardware validation.
arXiv Detail & Related papers (2024-07-09T16:46:00Z) - Theoretical framework for real time sub-micron depth monitoring using
quantum inline coherent imaging [55.2480439325792]
Inline Coherent Imaging (ICI) is a reliable method for real-time monitoring of various laser processes, including keyhole welding, additive manufacturing, and micromachining.
The axial resolution is limited to greater than 2 mum making ICI unsuitable for monitoring submicron processes.
Advancements in Quantum Optical Coherence Tomography (Q OCT) has the potential to address this issue by achieving better than 1 mum depth resolution.
arXiv Detail & Related papers (2023-09-17T17:05:21Z) - Quantum Diamond Microscope for Dynamic Imaging of Magnetic Fields [0.602276990341246]
Recently, wide-field NV magnetic imaging based on the Ramsey protocol has achieved uniform and enhanced sensitivity compared to conventional measurements.
We integrate the Ramsey-based protocol with spin-bath driving to extend the NV spin dephasing time and improve magnetic sensitivity.
We discuss potential new applications of this dynamic QDM in studying biomineralization and electrically-active cells.
arXiv Detail & Related papers (2023-09-12T20:23:11Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Fast scanning nitrogen-vacancy magnetometry by spectrum demodulation [0.0]
We demonstrate a spectrum demodulation technique for speeding up the data acquisition rate in scanning nitrogen-vacancy center magnetometry.
Our method relies on a periodic excitation of the electron spin resonance by fast, wide-band frequency sweeps combined with a phase-locked detection of the photo-luminescence signal.
arXiv Detail & Related papers (2022-05-13T12:07:06Z) - High speed microcircuit and synthetic biosignal widefield imaging using
nitrogen vacancies in diamond [44.62475518267084]
We show how to image signals from a microscopic lithographically patterned circuit at the micrometer scale.
Using a new type of lock-in amplifier camera, we demonstrate sub-millisecond spatially resolved recovery of AC and pulsed electrical current signals.
Finally, we demonstrate as a proof of principle the recovery of synthetic signals replicating the exact form of signals in a biological neural network.
arXiv Detail & Related papers (2021-07-29T16:27:39Z) - Sub-second Temporal Magnetic Field Microscopy Using Quantum Defects in
Diamond [10.499603209896307]
Magnetic field microscopy has been realised by probing shifts in optically detected magnetic resonance spectrum of Nitrogen Vacancy (NV) defect centers in diamond.
These widefield diamond NV magnetometers require few to several minutes of acquisition to get a single magnetic field image.
Here, we show that the magnetic field imaging frame rate can be significantly enhanced by performing lock-in detection of NV photo-luminescence.
arXiv Detail & Related papers (2021-07-26T14:22:02Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.