High-resolution, Wide-frequency-range Magnetic Spectroscopy with Solid-state Spin Ensembles
- URL: http://arxiv.org/abs/2412.02040v2
- Date: Wed, 04 Dec 2024 21:44:37 GMT
- Title: High-resolution, Wide-frequency-range Magnetic Spectroscopy with Solid-state Spin Ensembles
- Authors: Zechuan Yin, Justin J. Welter, Connor A. Hart, Paul V. Petruzzi, Ronald L. Walsworth,
- Abstract summary: We experimentally demonstrate a high-resolution magnetic spectroscopy protocol that integrates a quantum frequency mixing (QFM) effect in a dense NV ensemble with coherently averaged synchronized readout (CASR)
We assess the sensitivity of this QFM-CASR protocol across a frequency range of 10$,$MHz to 4$,$GHz.
Compared to state-of-the-art NV-diamond techniques for narrowband magnetic spectroscopy, the QFM-CASR protocol greatly extends the detectable frequency range.
- Score: 0.0
- License:
- Abstract: Quantum systems composed of solid-state electronic spins can be sensitive detectors of narrowband magnetic fields. A prominent example is the nitrogen-vacancy (NV) center in diamond, which has been employed for magnetic spectroscopy with high spatial and spectral resolution. However, NV-diamond spectroscopy protocols are typically based on dynamical decoupling sequences, which are limited to low-frequency signals ($\lesssim{20}\,$MHz) due to the technical requirements on microwave (MW) pulses used to manipulate NV electronic spins. In this work, we experimentally demonstrate a high-resolution magnetic spectroscopy protocol that integrates a quantum frequency mixing (QFM) effect in a dense NV ensemble with coherently averaged synchronized readout (CASR) to provide both a wide range of signal frequency detection and sub-Hz spectral resolution. We assess the sensitivity of this QFM-CASR protocol across a frequency range of 10$\,$MHz to 4$\,$GHz. By measuring the spectra of multi-frequency signals near 0.6, 2.4 and 4$\,$GHz, we demonstrate sub-Hz spectral resolution with a nT-scale noise floor for the target signal, and precise phase measurement with error $<1^\circ$. Compared to state-of-the-art NV-diamond techniques for narrowband magnetic spectroscopy, the QFM-CASR protocol greatly extends the detectable frequency range, enabling applications in high-frequency radio frequency (RF) and MW signal microscopy and analysis, as well as tesla-scale nuclear magnetic resonance (NMR) spectroscopy of small samples.
Related papers
- Quantum Diamond Microscope for Narrowband Magnetic Imaging with High Spatial and Spectral Resolution [1.7728122624261802]
The quantum diamond microscope (QDM) is a recently developed technology for near-field imaging of magnetic fields with micron-scale spatial resolution.
The present instrument has spatial resolution $approx2,mathrmmu m$, field-of-view $approx300times300,mathrmmu m2$, and per-pixel sensitivity to narrowband fields $sim1,$nT$cdot$Hz$-1/2$.
arXiv Detail & Related papers (2024-06-06T15:57:53Z) - Fast characterization of optically detected magnetic resonance spectra via data clustering [0.0]
Optically detected magnetic resonance (ODMR) has become a well-established and powerful technique for measuring the spin state of solid-state quantum emitters.
Central to many of these sensing applications is the ability to reliably analyze ODMR data.
We present an algorithm based on data clustering that overcomes this limitation.
arXiv Detail & Related papers (2024-05-28T23:18:47Z) - High-Field Microscale NMR Spectroscopy with NV Centers in Dipolarly-Coupled Samples [0.0]
Diamond-based quantum sensors have enabled high-resolution NMR spectroscopy at the microscale.
We present a protocol that enables the scanning of nuclear spins in dipolarly-coupled samples at high magnetic fields.
arXiv Detail & Related papers (2024-05-21T15:14:16Z) - Two-tone spectroscopy for the detection of two-level systems in superconducting qubits [108.40985826142428]
Two-level systems (TLS) of unclear physical origin are a major contributor to decoherence in superconducting qubits.
We propose a novel method that requires only a microwave drive and dispersive readout, and thus also works fixed-frequency qubits.
arXiv Detail & Related papers (2024-04-22T09:53:00Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Heterodyne Sensing of Microwaves with a Quantum Sensor [0.0]
Diamond quantum sensors are sensitive to weak microwave magnetic fields resonant to the spin transitions.
Here we demonstrate a heterodyne detection method for microwaves (MW) leading to a lifetime independent spectral resolution in the GHz range.
arXiv Detail & Related papers (2020-08-23T16:38:05Z) - Cross-relaxation studies with optically detected magnetic resonances in
nitrogen-vacancy centers in diamond in an external magnetic field [0.0]
Cross-relaxation between nitrogen-vacancy centers and substitutional nitrogen in a diamond crystal was studied.
Optically detected magnetic resonance signals (ODMR) can be used to measure these signals successfully.
arXiv Detail & Related papers (2020-07-01T13:23:22Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.