Self-Regulated Data-Free Knowledge Amalgamation for Text Classification
- URL: http://arxiv.org/abs/2406.15476v1
- Date: Sun, 16 Jun 2024 21:13:30 GMT
- Title: Self-Regulated Data-Free Knowledge Amalgamation for Text Classification
- Authors: Prashanth Vijayaraghavan, Hongzhi Wang, Luyao Shi, Tyler Baldwin, David Beymer, Ehsan Degan,
- Abstract summary: We develop a lightweight student network that can learn from multiple teacher models without accessing their original training data.
To accomplish this, we propose STRATANET, a modeling framework that produces text data tailored to each teacher.
We evaluate our method on three benchmark text classification datasets with varying labels or domains.
- Score: 9.169836450935724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a growing availability of pre-trained text models on various model repositories. These models greatly reduce the cost of training new models from scratch as they can be fine-tuned for specific tasks or trained on large datasets. However, these datasets may not be publicly accessible due to the privacy, security, or intellectual property issues. In this paper, we aim to develop a lightweight student network that can learn from multiple teacher models without accessing their original training data. Hence, we investigate Data-Free Knowledge Amalgamation (DFKA), a knowledge-transfer task that combines insights from multiple pre-trained teacher models and transfers them effectively to a compact student network. To accomplish this, we propose STRATANET, a modeling framework comprising: (a) a steerable data generator that produces text data tailored to each teacher and (b) an amalgamation module that implements a self-regulative strategy using confidence estimates from the teachers' different layers to selectively integrate their knowledge and train a versatile student. We evaluate our method on three benchmark text classification datasets with varying labels or domains. Empirically, we demonstrate that the student model learned using our STRATANET outperforms several baselines significantly under data-driven and data-free constraints.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Few-Shot Class-Incremental Learning with Non-IID Decentralized Data [12.472285188772544]
Few-shot class-incremental learning is crucial for developing scalable and adaptive intelligent systems.
This paper introduces federated few-shot class-incremental learning, a decentralized machine learning paradigm.
We present a synthetic data-driven framework that leverages replay buffer data to maintain existing knowledge and facilitate the acquisition of new knowledge.
arXiv Detail & Related papers (2024-09-18T02:48:36Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying [10.919336198760808]
We introduce a novel methodology to detect leaked data that are used to train classification models.
textscLDSS involves injecting a small volume of synthetic data--characterized by local shifts in class distribution--into the owner's dataset.
This enables the effective identification of models trained on leaked data through model querying alone.
arXiv Detail & Related papers (2023-10-06T10:36:28Z) - Distilling Knowledge from Self-Supervised Teacher by Embedding Graph
Alignment [52.704331909850026]
We formulate a new knowledge distillation framework to transfer the knowledge from self-supervised pre-trained models to any other student network.
Inspired by the spirit of instance discrimination in self-supervised learning, we model the instance-instance relations by a graph formulation in the feature embedding space.
Our distillation scheme can be flexibly applied to transfer the self-supervised knowledge to enhance representation learning on various student networks.
arXiv Detail & Related papers (2022-11-23T19:27:48Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
We propose the first end-to-end framework for data-free adversarial knowledge distillation on graph structured data (DFAD-GNN)
To be specific, our DFAD-GNN employs a generative adversarial network, which mainly consists of three components: a pre-trained teacher model and a student model are regarded as two discriminators, and a generator is utilized for deriving training graphs to distill knowledge from the teacher model into the student model.
Our DFAD-GNN significantly surpasses state-of-the-art data-free baselines in the graph classification task.
arXiv Detail & Related papers (2022-05-08T08:19:40Z) - Multi-Task Self-Training for Learning General Representations [97.01728635294879]
Multi-task self-training (MuST) harnesses the knowledge in independent specialized teacher models to train a single general student model.
MuST is scalable with unlabeled or partially labeled datasets and outperforms both specialized supervised models and self-supervised models when training on large scale datasets.
arXiv Detail & Related papers (2021-08-25T17:20:50Z) - Fuzzy Simplicial Networks: A Topology-Inspired Model to Improve Task
Generalization in Few-shot Learning [1.0062040918634414]
Few-shot learning algorithms are designed to generalize well to new tasks with limited data.
We introduce a new few-shot model called Fuzzy Simplicial Networks (FSN) which leverages a construction from topology to more flexibly represent each class from limited data.
arXiv Detail & Related papers (2020-09-23T17:01:09Z) - Evaluation Framework For Large-scale Federated Learning [10.127616622630514]
Federated learning is proposed as a machine learning setting to enable distributed edge devices, such as mobile phones, to collaboratively learn a shared prediction model.
In this paper, we introduce a framework designed for large-scale federated learning which consists of approaches to generating dataset and modular evaluation framework.
arXiv Detail & Related papers (2020-03-03T15:12:13Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
We bridge the gap between the abundance of available data and lack of relevant data, for the future learning tasks of a trained network.
We use the available data, that may be an imbalanced subset of the original training dataset, or a related domain dataset, to retrieve representative samples.
We demonstrate that data from a related domain can be leveraged to achieve state-of-the-art performance.
arXiv Detail & Related papers (2019-12-27T02:05:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.